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A comparison of theoretical and empirical results for some 
stochastic population models* 

BY M. S. BARTLETT, J. C. GOWER AND P. H. LESLIE 

Statistical Laboratory, University of Manchester ; Statistical Department, Rothamsted Experi- 
mental Station ; Bureau of Animal Population, Department of Zoological Field Studies, Oxfwd 

1. GENERAL REMARKS 

In recent papers Bartlett (1957), Leslie (1958) and Leslie & Gower (1958) have illustrated 
by means of artificial series the properties of various idealized models of biological systems, 
including the single-species logistic stochastic process and two-species extensions. While 
these artificial series are always useful in an auxiliary qualitative sense, the theoretical 
intractability of many of these models has given the artificial series a somewhat more 
important role than they might otherwise have had. Nevertheless, what theoretical results 
there are should not be neglected, and indeed some of these ~ere~comparedwith empirical 
results from series in the last two of the papers mentioned above. It is the purpose of the 
present paper to indicate somewhat more systematically where theoretical results, even 
when only approximate, may be useful, and to make some further comparisons with the 
empirical results available. 

PART I. THEORETICAL RESULTS 

2. SINGLE-SPECIES MODELS (CONTINUOUS TINE) 

Consider first a stochastic population model for a single species, with transition prob- 
abilities (in continuous time during the infinitesimal interval dt) A,dt of a 'birth', and p,dt 
of a, 'deathY, where n is the total population size. A 'death' may include emigration, but 
unless a 'birth' can include immigration, A, = 0. If A, = 0, an ultimate stationary dis- 
tribution for n cannot strictly exist, but may effectively exist over all realizable time- 
intervals (see § 5; also Leslie (1958), Bartlett (1960)). Under conditions for which a sta- 
tionary (or quasi-stationary) distribution does exist, the probability distribution for it 
must satisfy the recurrence relation 

(see, for example, Bartlett, 1960), from which relation the exact distribution P(n) may 
always be calculated numerically, aa will be illustrated below ( 5  6). Under some further 
conditions which include m, m/uB 1, we have asymptotically 

P(n) - C exp ( - &(n - m)2/a2}, (2) 

where m is the relevant solution of A,,, = p,, and 

* The work of one of the' authors (M. S. B.) was supported in part by a research contract between 
the Office of Naval Reaearch and the Department of Statistics, Harvard University. 
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Ifalternatively the properties of small fluctuations about the mean of the stationary 
distribution are investigated directly, the results obtained to the first approximation will 
be equivalent to the normal approximation above. As the first mention of this approach 
(Bartlett, 1956) was rather brief, it seems worth while showing how it may be developed to 
include second-stage (or even higher order) corrections. The procedure is sufficiextly illu- 
strated by means of the logistic model 

where A,, remains zero when n > a,/b,, (a,,b,,a,,.b, > 0). The stochastic equation (cf. 
Bartlett, 1957) 53 

d q  = (AN - pN) dt + dzl - dz2, (5) 

A.veraging (6) on the assumption that a stationary distribution has been reached, we have 
(from the coefficient of dt) 

(a, - a,) m - (b, + b,) (a2 + m2) = 0, (7) 

where m = E{N), cr2 r E{(N - m),}. Write further 6 4  = N, - m; then 

Squaring and averaging this equation, we have exactly 

2[(a1 -a2) cr2 - (b,  + b,) p,] + [(a, + a,) m - (b, - b,) (m2 + a,)] = 0, 

where p, = E{(GN)S). Hence to the first order of approximation (noting that 

to this order) u2 - (a, - blm)/(bl + b,). (9) 

Similarly from the cube of (8) we obtain, noting that the averaged cube of d2,-dZ, is 
strictly zero a t  N = m, 

From the normality approximation, we can to the second order of approximation write in 
this equation ~ c ,  = E{(SN)4} = 304. We thus obtain 

(% - a21 (PS + mu2) - (bl + b2) (m2u2 + 2mp3 + 3 d )  = - (a, + a,) a" (b, - b,) (2mu2 + p,), 

whence to the same orc'er, as m 9 1, 

It will be seen that p, is only zero to this order if b, = b,; and i t  changes sign as we move 
from a constant birth-rate (b, = 0) to a constant death-rate (b, = 0). 

Before, however, we consider comparing any of these results with empirical results 
obtained from Lealie's artificial series, we must recall tnat the Iathr were obtained on the 
basis of a discrete-time model (Leslie, 1958), which has its own theoretical distribution. 
Whilst its exact form would be complicated, the investigation of approximative moment 
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Theoretical and empirical results for stochastic population models 3

formulae proceeds very similarly, as was noted by Leslie & Gower (1958) in the case of a
two-species model. We shall illustrate the procedure here for a single-species model, taking
it to the next stage of approximation.

The transitions in Leslie's model are obtained from the recurrence formulae

(11)

v,-u,t

treating bt and dt constant from ttot+l, and assuming also &Nt normal (with the restriction
Nt+1 > 0). Putting bt—dt = log A,, we have in the recurrence relation

NM^f{N,) + ZM, (12)

f(Nt) = Ajî  in this case, where A, for the logistic model is of the form A/(l + <zNt). Putting
SNt = Nt — m, where m = E{Nfi under stationary conditions, and writing

where 3//3ro denotes 3//3^ at the value Nt = m, etc., we have in the first approximation

m=f(m) = (A-l)/a, (13)

(14)

1 38/
To the next approximation f(m) — m + - ^-z crs = 0,

2 am*

where dfjdm = I/A, 3s//9ma = -2a/Aa; and

Now fig(Z) = 0, fit ~ 3CT4, and it only remains to evaluate such terms as E{cr%(Zl+1 \ Nt) SN^.
It should be noted that the value of this expression may depend on the precise numerical
procedure adopted in obtaining the artificial series. Thus if (T2(Zt+1 \ Nt) were taken constant,
say at the value <r%(Zl+1 \ m), the whole of the last term in the expression above for /^ would
be zero. However, if, more accurately, we expand <r2(Zt+11 JV,) in (11) in the neighbourhood
of Nt = m (where 6, ~ dt), we find

<r\Zt+11 Nt) ~ (24 - (36 - 1 ) aSNJA) N, (15)

when the birth-rate is constant (b), and

<T*(Zt+1\Nt)~(2d-(3d+l)a8Ntl\)Nt (16)

when the death-rate is constant (d). These results, incidentally, may be useful as approxi-
mations for <r*(Z(+1) when artificial series are being constructed. Thus, retaining terms of
the appropriate order, we find for 6, = 6,

{ w e p } „„
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4 M. S. BARTLETT, J . C. GOWER AND P . H. L E S L I E

Similarly in the case of constant death-rate (d),

(.8)

I t may be useful to summarize the formulae derived in §§ 2 and 3.

Logistic model; continuous time

Variance (1st approx.) cr2 ~ (a1 — b1rn)l(b1 + b2).
Mean (2nd approx.) TO' ~ m — <72/ra, where m = («i —
Skewness (2nd approx.) fi^ ~ o'3(bi —

Discrete time

A, = A/(l +aNt), (i) birth-rate constant, 6; (ii) death-rate constant, d.

(i) Variance (1st approx.) a2 ~ 26ro/{l — (I/A)2}, where m = (A- l)/a.
Mean (2nd approx.) m' ~ m — cr2/(Am).
Skewness (2nd approx.)

(ii) Variance (1st approx.) <r2 ~ 2dwi/{l -(I/A)2}.
Mean (2nd approx.) ml ~ m — a2/(Am).
Skewness (2nd approx.)

4. MODELS WITH TWO SPECIES

Whilst the above methods are available for models with two (or more) species, the
formulae get rather complicated; as the first approximation results in the case of a quasi-
stationary distribution for two species have already been indicated by Leslie & Gower
(1958), they will not be listed here. With regard to the exact recurrence relation (1) for the
distribution P(n), the corresponding relation for two species is easy to write down, but has
no simple method of solution. However, under conditions for which a well-defined stationary
(or quasi-stationary) distribution exists with mit fni\o'i >̂ 1, the distribution will be approxi-
mately bivariate normal, with its moments given by the approximate formulae already
referred to.

In the case of models for which one species will become extinot, it is also easy to write
down the equation satisfied by the extinction probability, say, p(n, ri) for the first species,
if n and n' are the initial numbers df the two species. Thus consider a continuous time model
with birth- and death-rates:

1st species 2nd speciee
A\fhtfi ) = €L± — Oj f l — C^fl A (fl ,f* ) = Oi — 0\1% —C\f%
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Theoretical and empirical results for stochastic population models 5

The equation forp(n, ri) is obtained from the differential equation for the chance of extinc-
tion pt(n, ri) by time t, and letting t -*• oo; this equation for pt(n, ri) is readily derived from
the possible transitions in the first infinitesimal interval dt. We obtain

nX(n,ri) [p(n + 1,ri) -p(n,ri)] + n/t(n, ri) [p(n- l,ri)-p(n, ri)]

+ n'\'(n,ri)[p(n,ri + l)-p(n,n')] + rifi'(n,ri)[p(n,ri -l)-p(n,ri)] = 0, (19)

with boundary conditions p(n,0) — 0,p(0,ri) = 1. While it is possible to solve this equation,
for example, by iteration, in any actual example, it seems quicker to obtain approximate
answers by Monte Carlo methods, as shown by Leslie & Gower (1958).

5. RECURRENCE TIMES

If it is desired to check recurrence times to any state S in a stationary process with a
finite number of states, the relevant formulae have been given by Bartlett (1955, §6.41).
Thus in the case of discrete time, the mean recurrence time is

U l ~ P(S)[1-P(S\S)]'

where P(8 \ S) denotes the conditional probability of S at one instant, given S at the previous
instant. In the case of continuous time, if P(S \ S) for times separated by an interval St is
1-eSt + o(8t), then i

This formulae is relevant in assessing the passage-time to the zero state S for population
processes with an 'absorbing barrier' at this state, for if we insert a fictitious escape prob-
ability eSt in St, we have from the equilibrium for the state N = 1,

= eP(O), (22)

whence 0 1 = ^ - ( 2 3 )

Under conditions for which P(0) is small, the quasi-stationary distribution P(n), (n > 0),
exists approximately independently of e, and under such conditions the mean recurrence
time©! ~ l/[JM1P(l)]givestheorderofmagnitudeofthe passage-time to zero. Forprocesses
of the type discussed in § 2 such passage-times may be so large as to- be considered infinite
(cf. Leslie, 1958).

PART n . NUMERICAL RESULTS

6. EXAMPLE OF DISTRIBUTION P(n)

It was noted in § 2 that the recurrence relation for P(n) enabled P(ra) to be calculated
exactly. This is strictly true only if the zero state is not absorbing, but from the last section
P(ri) is effectively defined in quasi-stationary cases also. Whilst it is still a purely theoretical
result, we give a numerical example of P(n) in this last case, for the logistic model

ax = 0-8077, bx = 0-006932,

a2 = 01145, 62 = 0.

P(n), standardized to a total of 4975, was found to have the values given in Table 1.
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6 M. S. BABTLETT, J. C. GOWER AND P. H. LESLIE

Table 1 (giving/ = 4975 P(n))

n=81
82
83
84
85
86
87
88
89
90
91
92

/= 0-1
0-2
0-5
1 0
1-9
3-7
6-7

11-8
20-2
33-2
52-7
80-6

n = 93
94
95
96
97
98
99

100
101
102
103
104

/ = 118-3
166-7
224-7
289-7
3560
416-3
461-8
484-8
480-1
446-8
388-9
3151

n=105
106
107
108
109
110
111
112
113
114

Total

/ = 236-7
163-4
1031
58-8
30-1
13-5

5-3
1-7
0-5
0 1

4975-0

The constants of this distribution as calculated by the approximate formulae of § 2 agree
very well with the exact results:

Exact Approximation

99-83 99-83 (2nd approx.)
16-52 (1st approx.)

m:
a*: 16-71

-16-61 - 16-52 (2nd approx.)

7. COMPARISON OF APPROXIMATE MOMENTS FOR DISCRETE-TIME

MODEL WITH EMPIRICAL RESULTS

Four empirical distributions for a logistic process in the region of the stationary state
were built up on the Elliott—N.R.D.C. 401 computer at Rothamsted Experimental Station,
taking the values of the parameters in the discrete-time model

A „

given in Table 2. In each case m = (A — l)/a = 100, and it will be noted that the unit of time
in 16 is £th of that adopted in the remaining three models.

Table 2

[odel

la
Ift

II a
116

A

2-0
11487
2 0
2 0

a

0 0 1
0001487
0 0 1
0 0 1

Constant
birth-rate (6)

10083
0-2017

—

Constant
death-rate (d)

—
—

01145
0-3151

The programmes used for computing la , I la and 116 were originally written for a system
of two competing species (Leslie & Gower, 1958), but by putting two of the parameters
equal to zero (cf. the equations given later in § 8), these could be used for computing simul-
taneously a pair of logistic processes. In order to simplify these programmes, however,
certain approximations had been niade to var (Nt+1 \ Nt). Thus, if the expression for the
variance in (11) is written as 9(1.r ,

(24)

where, when the birth-rate (6) remains constant (BRC model),
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Theoretical and empirical results for stochastic population models

and when the death-rate (d) remains constant (DRC model),

, - l ) , (25)

then it may be shown empirically (Leslie, 1958), by tabulating <j> over a relatively wide
range of possible values of A, (or log^A, = r(), that in the BRC model we have, when A = 2-0
and constant (b) = 1-0083, ^ ^

( 2 6 )

and in the DRC model for
constant (d) = 0-1145: cr*{Nt+1) ~ (-0-87 + M0A,)#{iV;+1},]

constant (d) = 0-3151: tr2{^+1} ~ ( -0 -66+ l29A)^{ i^}J

These empirical approximations, which should hold over the entire development of any
process with the given parameters, are closely related to (15) and (16) for systems in the
neighbourhood of the stationary mean. For, expressing the latter in terms of E{NI+1

we have in the region of Nt ~ m,

and (15) and (16) can be written, respectively, as

}, (28)

[(d -1) + (d + 1) AJ E{Nl+l}. (29)

Thus, in the BRC model, when b ~ 1,

while in the DRC model, for d = 01145,

(T%Zl+11 Nt} ~ [ - 0-8855 +1-

and for d = 0-3151 <T2{Z,+11 N,} ~ [-0-6849 + 1-3151^] E{Nt+1},

which correspond very closely to (27).
In the remaining model (lb), a programme waa used in which the 'exact' expression (24)

for <f> was incorporated. This has the advantage that the choice of the constant birth-rate
(b) is not restricted to only a very limited range of values, as in the case of the approxima-
tion (26).

The observed moments of these computed distributions, together with those expected
from the theoretical approximations for the discrete-time (D-T) and equivalent continuous-
time (C-T) models, are shown in Table 3.

The agreement between the observed moments and the theoretical approximations for
the discrete-time model seems very satisfactory, considering the errors involved in estimating
the former, even in samples of this size. The standard errors quoted are in general classical
values, ignoring the serial correlations between the successive observations, and repre-
senting lower limits to the correct values. The correlation p1 between successive observa-
tions is to the first approximation I/A, and the correcting factors to the standard errors of
the mean and standard deviation are respectively ^{(1 +Pi)/(1 ~Pi)} a n ( i V{(* + Pi) 1(1 ~Pi)}-
Where the differences between the observed and theoretical means or standard deviations
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8 M. S. BARTLETT, J. C. GOWEK AND P. H. LESLIE

exceed twice the classical standard error, the corrected standard error is shown in brackets,
and it will be seen that the one such difference no longer appears anomalous. The corrections
to the standard errors of moments to allow for dependence become more complicated for
the higher moments, but are not needed for the y1 values in Table 3 (formulae for them may
be ascertained if required from Chanda (1958)).

Table 3

Model

l a

16

n o

116

Xo. of
observations

9950

5240

4975

4975

Moment

Mean
cr

Mean
cr
7i

Mean
cr

7i

Mean
cr

7i

Approximations

(C-T) model

98-54
1206
0-083

98-54
1206
0083

99-83
406

-0-246

99-55
6-74

- 0 1 4 8

(D-T) model

98-66
16-40
0-035

98-55
12-90
0-076

99-85
5-53

-0-161

99-58
9-17

-0-103

Observed
(D-T) model

98-60 ±0-16
16-47 ± 0 1 2
0-072 ±0-025

98-63 ± 0 1 7
12-53 ± 0 1 2 (0-33)
0-053 ±0034

99-97 ±008
5-51 ±006

-0-182 ±0035

99-44 ±0-13
9-16 ±009

-0-103 ±0-035

Table 4

AN) N N AN)

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

1
0
0
1
2
5
3
4
9

20
33
35
51
67
97

92
93
94
95
96
97
98
99

100
101
102
103
104
105
106

138
166
194
213
270
285
310
329
350
361
357
339
318
261
177

107
108
109
110
111
112
113
114
115
116
117
118

188
120

90
64
54
25
17
14

6
0
0
1

Total 4975

As an illustration, we give in Table 4 the observed frequency distribution for model II a,
corresponding to the continuous-time model for which the exact distribution is given in § 6.

The main difference between this observed distribution and the exact form for the
equivalent continuous-time model is in the scale of the variance cr2 (one notes in passing
that in both cases /<3 ~ — a2). It is, however, always possible to make the variances of the
two types of model more in agreement by adopting a smaller unit of time in the discrete-
time model, as is illustrated in the cases of l a and 16 in the above table.

I t may also be of interest to consider the recurrence times which were observed in this
set of realizations for model IIa. Regarding the occurrence of a particular integer as a
specified state S being occupied, the mean life-time spent in the state S, T1 = 1/{1 — P(S | S)},
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Theoretical and empirical results for stochastic population models 9

could be determined from the typed lists of results, and hence the mean recurrence time
for the state S,

The observed values of T-y and Qlt neglecting the tails of the distribution where the observed
frequencies became small, are given in Table 5.

Table 5

s
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Observed
A

11250
10000
10312
1-0294
10851
10635
10211
1-0455
10573
1-0838
11036
1-0887
1-0634
10954
1-0717

©i

6230
247-7
154-5
145-2
104-7
78-0
51-4
36-7
30-7
26-7
24-7
18-9
17-5
16-4
15-1

Normal
approxi-

1X1 QUID 11

©i
551-7
343-2
220-5
146-4
100-5
71-2
52-2
39-5
30-9
25-0
20-9
18-0
1 6 1
14-8
14-1

S

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

Observed
A

1-0870
1-0341
1-0593
11042
11042
1-0830
1-0727
11124
1-0526
1-0465
10159
1-0000
1-0870
1-0625
1-0000

© i

14-3
13-9
13-7
1 5 1
1 6 1
19-6
29-1
28-4
42-6
56-8
77-9
91-1

215-2
309-8
354-8

Normal
approxi-

©.

13-8
1 4 1
14-8
1 6 1
18-0
20-9
25-0
30-9
39-5
52-2
71-2

100-5
146-4
220-5
343-2

If the conditional probability of S, given S at the preceding instant, P(S | S) ~ P(S), as
appears very roughly to be the case in this example (e.g. for the ten states disposed sym-
metrically about the mean, the average P(S \ S) = 0-0785 and the average P(£) = 0-0630),
t h e n 0 ,

Taking the first approximations to the moments of the discrete-time distribution, when the
death-rate remains constant, viz.

mean = (A— l)/a = m,

then the normal approximation is

These figures are given in the third column of the above table, and it will be seen that
although the departures from normality of the actual distribution are appreciable, yet on
the whole the approximation indicates the order of magnitude of the observed recurrence
times, more particularly for the states which are less than the mean value. By extrapolation

1/P(1)~ 7-0 xlO70,

and it is evident, without proceeding any further, and without taking the approximate
value too literally, that the probability of random extinction for this system is negligible,
even in the case of the discrete-time model with its larger variance.
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10 M. S. BABTLETT, J. C. GOWER A2JD P. H. LESLIE

8. COMPARISON OF APPROXIMATE MOMENTS WITH EMPIRICAL

RESULTS FOR A TWO-SPECIES SYSTEM

Two bivariate distributions were computed for a system of two competing species
fluctuating in the region of the stable stationary state. I t was assumed in both cases that
the death-rate (d) of each species remained constant, and in the set of deterministic equations
defining the expectations for this type of system (Leslie & Gower, 1958),

| Nl{i),NM = 1+J$%im, (30)

(31)

the following parameters were adopted in System A,

Ax = 2-5, ĉ  = 0-1145, a i = 0-008, /?x = 0-003,

Aj,= 2-0, d2 = 0-3151, a2 = 0-00625, /?2 = 0-0025.

In the second case, System B, the same set of parameters was used, except that the value
of av was changed to a t = 0-005. The computed distributions were based on 1000 observa-
tions for A, and on 995 for B.

The first approximations to the moments are (assuming that both Nt and N2 are dis-
tributed normally about the stationary state)

- ' > , ( 3 2 ,

mean (Ay = a ^ ~ I ) ~ ^ 1 " l), (33)

and for the marginal distributions,

<34)

while the variances and covariances may be obtained from the solution of the equations
which have already been given for the discrete-time model (Leslie & Gower, 1958, §5).
The results are shown in Table 6.

Table 6

.System A System B

Approximation Observed Approximation Observed

Mean (ATJ 150-0 150-82 268-4 270-16
Mean (Nt) 100-0 9919 52-6 50-75
<r(iV,) 7-84 7-85 11-06 11-37
o-(.V,) 11-49 1203 11-68 12-42
p(NltN,) -0-364 -0-446 -0-529 -0-602

0 +0001 0 -0-005
0 +0074 0 -0-022

The agreement between the approximations and the observed means, standard devia-
tions and correlation coefficients seems very satisfactory in both cases; while the magnitude
of the skewness coefficients suggest that both distributions could be regarded as approxi-
mately bivariate normal in form.
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Theoretical and empirical results for stochastic population models 11
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