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A comparison of theoretical and empirical results for some
stochastic population models*

By M. S. BARTLETT, J. C. GOWER axp P. H. LESLIE

Statistical Laboratory, University of Manchester ; Statistical Department, Rothamsted Experi-
mental Station ; Bureauof Animal Population, Department of Zoological Field Studies, Oxford

1. GENERAL REMARKS

In recent papers Bartlett (1957), Leslie (1958) and Leslie & Gower (1958) have illustrated
by means of artificial series the properties of various idealized models of biological systems,
including the single-species logistic stochastic process and two-species extensions. While
these artificial series are always useful in an auxiliary qualitative sense, the theoretical
intractability of many of these models has given the artificial series a somewhat more
important role than they might otherwise have had. Nevertheless, what theoretical results
there are should not be neglected, and indeed some of these were.compared with empirical
results from series in the last two of the papers mentioned above. It is the purpose of the
present paper to indicate somewhat more systematically where theoretical results, even
when only approximate, may be useful, and to make some further comparisons with the
empirical results available.

PART I. THEORETICAL RESULTS
2. SINGLE-SPECIES MODELS (CONTINUOUS TIME)

Consider first a stochastic population model for a single species, with transition prob-
abilities (in continuous time during the infinitesimal interval dt) A, d¢ of a ‘birth’, and x,, d¢
of a ‘death’, where = is the total population size. A ‘death’ may include emigration, but
unless a ‘birth’ can include immigration, A, = 0. If A, = 0, an ultimate stationary dis-
tribution for n cannot strictly exist, but may effectively exist over all realizable time-
intervals (see §5; also Leslie (1958), Bartlett (1960)). Under conditions for which a sta-
tionary (or quasi-stationary) distribution does exist, the probability distribution for it
must satisfy the recurrence relation

/‘LnP(n) = An-—-lP(n_ 1) (1)

(see, for example, Bartlett, 1960), from which relation the exact distribution P(n) may
always be calculated numerically, as will be illustrated below (§6). Under some further
conditions which include m, m[o> 1, we have asymptotically

P(n) ~ Cexp{~hn—m)?}, (2)
where m is the relevant solution of A,, = y,,, and
A p )]
2 — n
o]

* The work of one of the authors (M.S.B.) was supported in part by a research contract between
the Office of Naval Research and the Department of Statistics, Harvard University.
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2 M. S. BARTLETT, J. C. GowEeR AND P. H. LESLIE

If alternatively the properties of small fluctuations about the mean of the stationary
distribution are investigated directly, the results obtained to the first approximation will
be equivalent to the normal approximation above. As the first mention of this approach
(Bartlett, 1956) was rather brief, it seems worth while showing how it may be developed to
include second-stage (or even higher order) corrections. The procedure is sufficiertly illu-
strated by means of the logistic model

’lu = a'ln_blnz’ HPn = a2n+b2n2a (4)

where A, remains zero when = > a,/b;, (a,,by, @5, b, > 0). The stochastic equation (cf.
t 2

Bartlett, 1957) s AN, = (A — ) + A%~ dZ, (5)

or Noas = N+ Ay —py)dt+dZ,—dZ,. (6)

Averaging (8) on the assumption that a stationary distribution has been reached, we have
(from the coefficient of d¢)

(2~ az) m — (b, + b,) (02 + m?) = 0, (7)
where m = E{N}, 0% = E{(N —m)2}. Write further §N, = N,—m; then
ONyg = SN+ Ay —py)dt +dZ, —dZ,. (8)

Squaring and averaging this equation, we have exactly
2[(ay—a5) 0% — (b + bp) 5] + [(a, + ag) m— (b — by) (ME+ 0%)] = O,
where u, = E{(6N)®}. Hence to the first order of approximation (noting that
m ~ (@, - a5)[(by+by), py~0
to this order) o? ~ (@, —b,m)/(b,+b,). 9)

Similarly from the cube of (8) we obtain, noting that the averaged cube of dZ,~—dZ, is
strictly zero at N = m,

3E{(Ay — piy) B(8N)? + 3E{(dZ, ~ dZ,)2 SN} = 0.

From the normality approximation, we can to the second order of approximation write in
this equation x4, = E{(6N)*} = 304 We thus obtain

(2, —a5) (43 + mo?) — (b + by) (MP0® + 2mpy + 304) = — (a; + @) T2+ (by — by) (2mo® + ),
whence to the same orcer, asm > 1,
#am(by +by) ~ o?m(by - b,),
that is Mg ~ %(by—b,)/(by+ by). (10)
It will be seen that uj is only zero to this order if b, = b,; and it changes sign as we move
from a constant birth-rate (b, = 0) to a constant death-rate (b, = 0).

3. SINGLE-SPECIES MODELS (DISCRETE TIME)

Before, however, we consider comparing any of these results with empirical results
obtained from Leslie’s artificial series, we must recall tnat the latter were obtained on the
bagis of a discrete-time model (Leslie, 1958), which has its own theoretical distribution.
Whilst its exact form would be complicated, the investigation of approximative moment
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Theoretical and emprirical results for stochastic population models 3

formulae proceeds very similarly, as was noted by Leslie & Gower (1958) in the case of a
two-species model. We shall illustrate the procedure here for a single-species model, taking
it to the next stage of approximation.
The transitions in Leslie’s model are obtained from the recurrence formulae
E{Ny} = S9N,
11
P} = P 1) s, an
treating b, and d, constant from ¢ to ¢t + 1, and assuming also AN, normal (with the restriction
N,y > 0). Putting b,—d; = log A,, we have in the recurrence relation
=)+ 2y, (12)

Sf(N)) = AN, in this case, where A, for the logistic model is of the form A/(1 +aX,). Putting
0N, = N,—m, where m = E{N} under stationary conditions, and writing

59 = fimy+ o8 2L yomp 2L

where 9f/om denotes of/¢N, at the value N, = m, etc., we have in the first approximation

m = f(m) = (A—-1)/a, (13)
I B
 1-(offom)* 1—(1/,1)”} (14)
Uty = 0.
T . 1 0%
o the next approximation fim) —m+§%§a’ 0,

where 9f/om = 1JA, 9%am® = — 22/A% and
po = B{(o8 L+ 0N =01 L4 2] | ~ a1+ (L)

1 52
3 (L) 2o+ 3B (4 | 20 (ML + a0 - 1 2.
Now p4(Z) = 0, u, ~ 30*, and it only remains to evaluate such terms as E{g%(Z,,, | N)) 8N}.
It should be noted that the value of this expression may depend on the precise numerical
procedure adopted in obtaining the artificial series. Thus if 0%(Z,, , | N;) were taken constant,
say at the value 0%(Z,,, | m), the whole of the last term in the expression above for uywould
be zero. However, if, more accurately, we expand d%(Z,,, | N) in (11) in the neighbourhood
of N, = m (where b, ~ d,), we find

Y24y | N) ~ (25— (35— 1) adN/A) N, (16)
when the birth-rate is constant (b), and
0% Zyya | N) ~ (24— (34 + 1) adN/A) B, (16)

when the death-rate is constant (d). These results, incidentally, may be useful as approxi-
mations for 0%(Z,,,) when artificial series are being constructed. Thus, retaining terms of
the appropriate order, we find for b, = b,

A — b)(A+2
o1 = (1 ~ G DENEED)

(3b—1)}. (17)

1-2
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4 M. S. BarTLETT, J. C. GowER AND P. H. LESLIE
Similarly in the case of constant death-rate (4),

30%(A—1) {(2d) (A+2)

(L= (1) ~ 2D CDELD (5. 1), 18)

It may be useful to summarize the formulae derived in §§ 2 and 3.

Logistic model; continuous time
A = 00 —by % py, = azn+bynt.
Variance (1st approx.) o? ~ (a, —b,m)/(b; + by).
Mean (2nd approx.) m’ ~ m—o?/m, where m = (a; — a;)/(b, + by).
Skewness (2nd approx.) gy ~ 03(by—b,)/(bg +b,).

Discrete tyme
A, = A/(1+aN)), (i) birth-rate constant, b; (ii) death-rate constant, d.
(i) Variance (1st approx.) o® ~ 2bm/{1 —(1/A)%}, where m = (A —1)/a.
Mean (2nd approx.) m’ ~ m —o2/(Am).
Skewness (2nd approx.)

302A(A —1) (2b(A +2)
DD, )
(ii) Variance (1st approx.) o ~ 2dm/{1 —(1/A)%}.
Mean (2nd approx.) m’ ~ m— o2/(Am).
Skewness (2nd approx.)
30PA(A — 1) (2d(A +2)
ba™ TB T { A+1 _(3d+1)}‘

4. MopELS WITH TWO SPECIES

Whilst the above methods are available for models with two (or more) species, the
formulae get rather complicated; as the first approximation results in the case of a quasi-
stationary distribution for two species have already been indicated by Leslie & Gower
(1958), they will not be listed here. With regard to the exact recurrencs relation (1) for the
distribution P(n), the corresponding relation for two species is easy to write down, but has
no simple method of solution. However, under conditions for which a well-defined stationary
(or quasi-stationary) distribution exists with m;, m /o, > 1, the distribution will be approxi-
mately bivariate normal, with its moments given by the approximate formulae already
referred to.

In the case of models for which one species will become extinot, it is also easy to write
down the equation satisfied by the extinction probability, say, p(n,n’) for the first species,
if n and »’ are the initial numbers of the two species. Thus consider a continuous time model
with birth- and death-rates:

1st species 2nd species

An,n’)=a,-bn—c,n A'(n,n') =a{—-bin’—cin
wn,n') =ay+byntecn’ w(n,n’)=ait+bin’+ein
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Theoretical and empirical results for stochastic population models b

The equation for p(n,n’) is obtained from the differential equation for the chance of extinc-
tion p,(n,n’) by time ¢, and letting ¢ —» oo; this equation for p,(n, n’) is readily derived from
the possible transitions in the first infinitesimal interval d¢. We obtain

nA(n,n’) [p(n+1,7) —p(n,n)]+nu(n,n') [p(n—1,7') ~ p(n, )]
+nl",(n7 n’) [p(nr n' + 1) _p(nx n’)] + n'/l”(nr nl) [p(n" n' — 1) —P(n: n')] =0, (19)
with boundary conditions p(n,0) = 0, p(0,n') = 1. While it is possible to solve this equation,

for example, by iteration, in any actual example, it seems quicker to obtain approximate
answers by Monte Carlo methods, as shown by Leslie & Gower (1958).

5. RECURRENCE TIMES

If it is desired to check recurrence times to any state S in a stationary process with a
finite number of states, the relevant formulae have been given by Bartlett (1955, § 6.41).
Thus in the case of discrete time, the mean recurrence time is

1~ P(S)

= PRI =PETE

(20)

where P(8 | S) denotes the conditional probability of S at one instant, given § at the previous
instant. In the case of continuous time, if P(S | S) for times separated by an interval &t is
1—¢8t +o(8t), then 1-P(S)

G)l:_e.P(T).

(21)
This formulae is relevant in assessing the passage-time to the zero state S for population
processes with an ‘absorbing barrier’ at this state, for if we insert a fictitious escape prob-
ability €8¢ in 8¢, we have from the equilibrium for the state ¥ = 1,

m P(1) = eP(0), (22)
1-P(0
whence 0, = /LIP((I))' (23)

Under conditions for which P(0) is small, the quasi-stationary distribution P(n), (n > 0),
exists approximately independently of ¢, and under such conditions the mean recurrence
time ©; ~ 1/[u, P(1)] gives the order of magnitude of the passage-time to zero. For processes
of the type discussed in § 2 such passage-times may be so large as to-be considered infinite
(cf. Leslie, 1958).

PART II. NUMERICAL RESULTS

6. EXAMPLE OF DISTRTBUTION P(n)

It was noted in §2 that the recurrence relation for P(n) enabled P(n) to be calculated
exactly. This is strictly true only if the zero state is not absorbing, but from the last section
P(n) is effectively defined in quasi-stationary cases also. Whilst it is still a purely theoretical
result, we give a numerical example of P(n) in this last case, for the logistic model

a, = 0-8077, b, = 0-006932,
a, = 01145, b, = 0.
P(n), standardized to a total of 4975, was found to have the values given in Table 1.
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6 M. S. BartLETT, J. C. GOWER AND P. H. LESLIE

Table 1 (giving f = 4975 P(n))

n=81  f= 01 n= 03  f=1183 n=105  f=2367
82 0-2 94 166-7 106 163-4
83 0-5 95 224-7 107 1031
84 10 96 289-7 108 588
85 19 97 356-0 109 30-1
86 37 98 416-3 110 135
87 67 99 4618 111 53
88 11-8 100 484-8 112 17
89 20-2 101 480-1 113 0-5
90 33-2 102 4468 114 01
91 527 103 388-9
92 80-6 104 3151 Total 4975-0

The constants of this distribution as calculated by the approximate formulae of § 2 agree
very well with the exact results:

Exact Approximation
m: 99-83 99-83 (2nd approx.)
ot: 16-71 16-52 (1st approx.)
By —16:61 —16-562 (2nd approx.)

7. COMPARISON OF APPROXIMATE MOMENTS FOR DISCRETE-TIME
MODEL WITH EMPIRICAL RESULTS

Four empirical distributions for a logistic process in the region of the stationary state
were built up on the Elliott—N.R.D.C. 401 computer at Rothamsted Experimental Station,
taking the values of the parameters in the discrete-time model

A
E{Nyy | N} = mNt =AN (A=e"9),
given in Table 2. Ineach case m = (A —1)/a = 100, and it will be noted that the unit of time

in Ib is $th of that adopted in the remaining three models.

Table 2
Constant Constant
Model A a birth-rate (b) death-rate (d)
Ia 2-0 0-01 1-0083 —
1b 1-1487 0-001487 0-2017 —
Ila 2:0 0-01 —_ 0-11456
I1b 2:0 0-01 — 0-3151

The programmes used for computing I, ITa and 116 were originally written for a system
of two competing species (Leslie & Gower, 1958), but by putting two of the parameters
equal to zero (cf. the equations given later in § 8), these could be used for computing simul-
taneously a pair of logistic processes. In order to simplify these programmes, however,
certain approximations had been made to var (N, |N,). Thus, if the expression for the

variance in (11) is written as
(1) Dy} = GEN,,a),

where, when the birth-rate (b) remains constant (BRC model),

¢=(2-1)a-, (24)
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Theoretical and empirical results for stochastic population models 7
and when the death-rate (d) remains constant (DRC modetl),

¢=(5+1)a-n, (25)

then it may be shown empirically (Leslie, 1958), by tabulating ¢ over a relatively wide
range of possible values of A, (or log, A, = r;), that in the BRC model we have, when A = 2:0

and constant (b) = 1-0083,
©) o¥{Nya} ~ 2E{N,,} (26)
and in the DRC model for

constant (d) = 0-1145: 0N} ~ (—0-87+1:104,) E{M+1},}

27
constant (d) = 0-3151: 02{N_,} ~ (—0-66+ 1-294)) E{N,,,}. @7

These empirical approximatione, which should hold over the entire development of any
process with the given parameters, are closely related to (15) and (16) for systems in the
neighbourhood of the stationary mean. For, expressing the latter in terms of E{N,,, | N},
we have in the region of N, ~ m,

: :

M ~ (1 +A8M) E{ZVHI}’ /\1 ~ I—Aé‘M,
and (15) and (18) can be written, respectively, as

0% Zyo | N} ~ [(0+1)+ (0= DA E{N,,}, (28)

0¥Zy1 | N} ~ (- 1)+ (@+ 1) A] E{N,,,}. (29)
Thus, in the BRC model, when b ~ 1,

0¥{Zyy | N} ~ 2E{N,1},
while in the DRC model, for d = 0-1145,
024y | Nij ~ [—0-8855 + 1- 11454 E{N,,},

and for d = 0-3151  ¢*Z,,, | N} ~ [—0-6849 + 1-3161A) E{N,,},

which correspond very closely to (27).

In the remaining model (15), a programme was used in which the ‘exact’ expression (24)
for ¢ was incorporated. This has the advantage that the choice of the constant birth-rate
(b) i8 not restricted to only a very limited range of values, as in the case of the approxima-
tion (26).

The observed moments of these computed distributions, together with those expected
from the theoretical approximations for the discrete-time (D-T) and equivalent continuous-
time (C-T) models, are shown in Table 3.

The agreement between the observed moments and the theoretical approximations for
the discrete-time model seems very satisfactory, considering theerrorsinvolvedin estimating
the former, even in samples of this size. The standard errors quoted are in general classical
values, ignoring the serial correlations between the successive observations, and repre-
senting lower limits to the correct values. The correlation p; between successive observa-
tions is to the first approximation 1/A, and the correcting factors to the standard errors of
the mean and standard deviation are respectively J/{(1 +p,)/(1 —p,)} and J{(1 + p3)/(1 — p2)}.
Where the differences between the observed and theoretical means or standard deviations
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8 M. S. BARTLETT, J. C. GOWER AND P. H. LESLIE

exceed twice the classical standard error, the corrected standard error is shown in brackets,
and it will be seen that the one such difference no longer appears anomalous. The corrections
to the standard errors of moments to allow for dependence become more complicated for
the higher moments, but are not needed for the y, values in Table 3 (formulae for them may
be ascertained if required from Chanda (1958)).

Table 3
Approximations
No. of - A N Observed
Model obgervations  Moment (C-T) model (D-T) model (D-T) model
Ia 9950 Mean 98-54 98-66 98-60+ 0-16
o 12-06 16-40 16-47 4+ 0-12
Y1 0-083 0-035 0-072 £ 0-025
Ib 5240 Mean 98-54 98-55 98-63+ 0-17
o 12-06 12-90 12-53 £ 0-12 (0-33)
¥, 0-083 0-076 0-053 £ 0-:034
Ila 4975 Mean 99-83 99-85 99-97 + 0-08
o 4-06 5-53 551+ 0-06
Y1 —0-246 —-0-181 —0-1824 0-035
I1b 4975 Mean 99-55 99-58 99-44 + 0-13
o 6-74 9-17 9-16 + 0-09
Y1 —0-148 -0-103 —0-103 £ 0-035
Table 4
N SN) N J(N) N J(N)
77 1 92 138 107 188
78 0 93 166 108 120
79 0 94 194 109 90
80 1 935 213 110 684
81 2 96 270 111 54
82 5 97 285 112 25
83 3 98 310 113 17
84 4 99 329 114 14
86 9 100 350 115 6
86 20 101 361 116 0
87 33 102 357 117 0
88 35 103 339 118 1
89 51 104 318
00 67 105 261
91 97 106 177 Total 4975

As an illustration, we give in Table 4 the observed frequency distribution for model I1a,
corresponding to the continuous-time model for which the exact distribution is given in § 6.

The main difference between this observed distribution and the exact form for the
equivalent continuous-time model is in the scale of the variance g% (one notes in passing
that in both cases g3 ~ —o?). It is, however, always possible to make the variances of the
two types of model more in agreement by adopting a smaller unit of time in the discrete-
time model, as is illustrated in the cases of Ia and Ib in the above table.

It may also be of interest to consider the recurrence times which were observed in this
set of realizations for model ITa. Regarding the occurrence of a particular integer as a
specified state S being occupied, the mean life-time spent in the state 8, T, = 1/{1 — P(S| §)},
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Theoretical and empirical results for stochastic population models 9

could be determined from the typed lists of results, and hence the mean recurrence time
for the state S, o 7 1- P(S)

1= *1 P( S) .
The observed values of T and Q,, neglecting the tails of the distribution where the observed
frequencies became small, are given in Table 5.

Table 5

Normal Normal

Observed approxi- Observed approxi-

State ———t— mation State ——— mation

S T, 0, 0, S T, 0, 0,

85 1-1250 623-0 551-7 100 1-0870 14-3 13-8
86 1-0000 247-7 343-2 101 1-0841 13-9 14-1
817 1-0312 1564-5 220-5 102 1-0593 13-7 14-8
88 1-0294 145-2 146-4 103 1-1042 156-1 16-1
89 1-0851 1047 100-5 104 1-1042 16-1 18-0
90 1-0835 78:0 71-2 105 1-0830 19-6 20-9
91 1-0211 51-4 52-2 106 1-0727 29-1 25-0
92 1-0455 36-7 39-56 107 1-1124 28-4 30-9
93 1-0573 30-7 30-9 108 1-0526 42-6 395
94 1-0838 26-7 25-0 109 1-0465 56-8 52-2
95 1-1036 24-7 20-9 110 10159 717-9 71-2
26 1-0887 18-9 18-0 111 1-0000 911 100-5
97 1-0834 1756 16-1 112 1-0870 215-2 146-4
98 1-0954 16-4 14-8 113 1-0825 309-8 220-5
99 1-0717 151 14-1 114 1-0000 354-8 343-2

If the conditional probability of S, given S at the preceding instant, P(S | S) ~ P(S), as
appears very roughly to be the case in this example (e.g. for the ten states disposed sym-
metrically about the mean, the average P(S|8) = 0-0785 and the average P(S) = 0-0630),

then 0, ~ 1/P(S).

Taking the first approximations to the moments of the discrete-time distribution, when the
death-rate remains constant, viz.

mean = (A—1)/a = m,
o? = 2dm/[{1 —(1/A)3},
My =0,

then the normal approximation is
(N —m)?
0, ~ J(2m) oexp [- 5o |-
These figures are given in the third column of the above table, and it will be seen that
although the departures from normality of the actual distribution are appreciable, yet on
the whole the approximation indicates the order of magnitude of the observed recurrence
times, more particularly for the states which are less than the mean value. By extrapolation

1/P(1) ~ 7-0 x 107,
and it is evident, without proceeding any further, and without taking the approximate

value too literally, that the probability of random extinction for this system is negligible,
even in the case of the discrete-time mode] with its larger variance.
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10 M. S. BARTLETT, J. C. GowER AND P. H. LESLIE

8. COMPARISON OF APPROXIMATE MOMENTS WITH EMPIRICAL
RESULTS FOR A TWO-SPECIES SYSTEM

Two bivariate distributions were computed for a system of two competing species
fluctuating in the region of the stable stationary state. It was assumed in both cases that
the death-rate (d) of each species remained constant, and in the set of deterministic equations
defining the expectations for this type of system (Leslie & Gower, 1958),

B+ 1) M0, 500} = e i (30)
BQe+ 1) | 30, ) = gt 31)

the following parameters were adopted in System A,
L, =25, d;=01145 a, = 0008, p, = 0-003,
Ay =20, dy=0-3I51, &= 000625 pf,= 0-0025.
In the second case, System B, the same set of parameters was used, except that the value
of a;, was changed to @, = 0-005. The computed distributions were based on 1000 observa-
tions for A, and on 995 for B.

The first approximations to the moments are (assuming that both N, and N, are dis-
tributed normally about the stationary state)

mean (N,) = az(/\la:l;z:"gi?:_ 1), (32)
_ a;(Ag—1)—Fy(A, = 1)
mean (N,) = 20510&3—/5’:/921 , (33)

and for the marginal distributions,
13(DNp) = pag(DNy) = 0; (34)

while the variances and covariances may be obtained from the solution of the equations
which have already been given for the discrete-time model (Leslie & Gower, 1958, §5).
The results are shown in Table 6.

Table 6
System A System B
— A — — — N
Approximation Observed Approximation Observed
Mean (N,) 150-0 150-82 268-4 270-16
Mean (N,) 100-0 99-19 52-6 50-76
o(N,) 7-84 7:85 11-06 11-37
o(N,) 11-49 12-:03 11-63 12-42
PN, Ny —0-364 —~0-446 ~0-529 —0-602
YNy 0 +0-001 0 ~0-005
YUN,) 0 +0-074 0 —0-022

The agreement between the approximations and the observed means, standard devia-
tions and correlation coefficients seems very satisfactory in both cases; while the magnitude
of the skewness coefficients suggest that both distributions could be regarded as approxi-
mately bivariate normal in form.
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