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The detection and segmentation of tiny green citrus fruits in dense orchards play a vital role in modern farming, 
directly influencing yield prediction, resource management, and timely decision-making. This research presents 
a cutting-edge framework that combines Multiscale Vision Transformers version 2 (MViTv2) with Cascade Mask 
R-CNN to tackle these challenges effectively. By extending the focus from close-up images to the novel inclusion 
of full-tree images, the framework enables accurate early-stage detection, segmentation, and counting of citrus 
fruits in practical orchard settings. Unlike conventional methods, this approach uses a dual-image strategy: close-

up images for training and full-tree images—more complex due to dense foliage and small fruits—for testing 
and real-world applications. To enhance detection accuracy in these detailed, full-tree images, the framework 
employs an innovative image-slicing method, breaking high-resolution images into smaller parts to capture finer 
details. The model was tested on a unique dataset featuring citrus orchards of three varieties: Nules grafted on 
Volka, Sidi Aissa grafted on Volka, and Orogrande grafted on sour orange. Results showed that the MViTv2_L 
backbone outperformed alternatives, achieving a mean Average Precision (mAP) of 72.97% for bounding boxes 
and 84.40% for masks. The image-slicing technique further boosted fruit detection in full-tree images, achieving 
an R2 value of up to 0.81 for fruit counting. This dual-image method, paired with advanced segmentation and 
detection technologies, marks a significant step forward for agricultural robotics and precision farming, enabling 
accurate early-stage fruit detection in real-world orchard environments.

1. Introduction

Advancements in artificial intelligence (AI) and deep learning (DL) 
have revolutionized computer vision, enabling the development of in-

novative solutions for complex challenges across diverse domains. AI 
has facilitated transformative applications in areas such as autonomous 
driving, medical imaging, and precision agriculture [14,38]. Deep learn-

ing, in particular, has enhanced the capabilities of computer vision by 
enabling algorithms to process and interpret large-scale image data with 
remarkable accuracy [10,39,32,2,25].

In the context of precision agriculture, these advancements have pro-

vided farmers with tools to improve productivity, optimize resource 
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management, and minimize environmental impact [19,35]. Precision 
agriculture integrates advanced technologies to monitor and manage 
crop growth, enabling timely decision-making for irrigation, pest con-

trol, and harvest planning [16,40]. Among its key applications is the 
detection and segmentation of crops and fruits, tasks that are critical for 
yield forecasting and agricultural interventions.

Citrus fruits, as a globally significant crop with over 143 million 
tons produced annually,1 present unique challenges for detection. Their 
small size, unripe green coloration, and the dense foliage in orchards 
complicate automated recognition and segmentation [3]. The ability to 
detect and segment citrus fruits at an early stage is pivotal for opti-

mizing resource allocation and yield prediction [31,30]. Despite these 
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challenges, early detection is critical to improving agricultural practices, 
as it facilitates timely interventions, including irrigation scheduling and 
pest management.

Traditional methods for citrus detection have employed image pro-

cessing and convolutional neural networks (CNNs). While these ap-

proaches have demonstrated reasonable performance, they often strug-

gle with real-world orchard environments, where fruit occlusion, vary-

ing light conditions, and complex backgrounds dominate [17,26]. Choi 
et al. [7] and Dorj et al. [8] both developed algorithms for citrus recog-

nition and counting, with Dorj et al. [8] achieving a high correlation 
coefficient of 0.93 and Choi et al. [7] achieving a 90% correct identi-

fication rate. Qin et al. [29] and Lyu et al. [24] both proposed target 
detection models, with Qin et al. [29] achieving a 90% correct identi-

fication rate and Lyu et al. [24] achieving a 98.23% mAP@.5 for green 
citrus. Chen et al. [5] focused on citrus recognition in different growth 
periods, achieving a segmentation accuracy of 94.87% for green cit-

rus and 97.08% for yellow citrus. However, most existing methods rely 
heavily on close-up images, neglecting the complexity of natural orchard 
environments, where dense foliage and variable lighting conditions ob-

scure fruits. Moreover, the challenges posed by the small size of unripe 
fruits, their tendency to blend with foliage, and orchard-level variabil-

ity require more advanced methods capable of operating in real-world 
conditions [17].

This paper introduces a novel framework to address these challenges 
by integrating Multiscale Vision Transformers version 2 (MViTv2) with 
Cascade Mask R-CNN. This framework combines the robust feature ex-

traction capabilities of MViTv2 with the precision of Cascade Mask 
R-CNN for detection and segmentation tasks. Cascade Mask R-CNN is 
a state-of-the-art instance segmentation model that progressively re-

fines predictions across multiple stages, ensuring higher accuracy for 
challenging objects and complex environments [4,13]. It has been suc-

cessfully applied in fields such as autonomous driving and agricultural 
monitoring [12,27]. Coupled with vision transformers, which excel at 
capturing fine-grained details and handling dense prediction tasks, this 
framework significantly improves detecting and segmenting citrus fruits 
in real-world conditions [9,36]. MViTv2, a multiscale variant of vision 
transformers, enhances feature recognition across various scales, mak-

ing it particularly effective in distinguishing small fruits from foliage in 
cluttered images.

To enhance the detection of small citrus fruits in full-tree images, the 
framework incorporates an image-slicing technique that divides high-

resolution images into smaller segments, allowing the model to process 
intricate details more effectively and improve the detection of small 
fruits obscured by dense foliage. Additionally, a dual-image strategy is 
introduced: close-up images are used for training, while full-tree im-

ages, capturing the complexity of natural orchards, are employed for 
testing and application. The framework was tested using different back-

bones and different slicing strategies, ensuring the model is well-trained 
to handle real-world agricultural scenarios.

The paper is structured as follows: Section 2 describes the data used 
in this research and offers a detailed account of the proposed framework, 
including the specific architecture of MViTv2 and Cascade Mask R-CNN. 
Section 3 presents the results, including an assessment of evaluation 
metrics, while Section 4 discusses these findings and addresses certain 
limitations. Finally, Section 5 concludes the paper by summarizing the 
discoveries and providing suggestions for future work.

2. Material and methods

This study presents an innovative approach to detecting and seg-

menting tiny green citrus fruits at an early stage. The following 
flowchart in Fig. 1 comprehensively illustrates the activities integral 
to the study. The following sections describe the processes in detail.

2.1. Plant materials

The experiment was conducted in a commercial orchard Cap agro 
(Jnane Rhamna Farm), located 35 km north of Marrakech (Morocco, 
52° 26’ 56.004”N, 9° 44’ 24”E). The study was carried out on 11-year-

old trees of the three clementine varieties:

1. Nules (Citrus clementina, Hort ex Tan) grafted on Volka (Citrus Volka-

meriana): characterized by the early flowering stage, which started 
on March 1st, 2022, and harvested on November 1st, 2022.

2. Sidi Aissa (Citrus reticulata Blanco) grafted on Volka (Citrus Volka-

meriana): characterized by mid-early flowering, which started on 
March 15th, 2022, and harvested on November 15th, 2022.

3. ‘Orogrande’ grafted on sour orange (Citrus aurantium L.): a late-

flowering variety that started flowering on April 1st, 2022 and 
harvested on December 1st, 2022.

The trees have an estimated lifespan of around 25 years, display-

ing similar growth dynamics, and their flowering phase persists for two 
months across all varieties. The trees were planted at a spacing of 6 m 
× 3 m on ridges made from the soil taken from the area between the 
rows to increase soil depth and improve water drainage in the orchard. 
These ridges are approximately 30 cm in height and 1.5 m in width. 
The trees were ferti-irrigated using two lines of drippers for each tree 
row, one on each side of the row placed 1.0 to 1.2 m away from the tree 
trunk. The drippers were 1 m apart on the line and had a flow rate of 
6 L h-1 dripper-1. Weeds, diseases, and pests were controlled according 
to local criteria and regulations.

2.2. Data collection

The field measurements were conducted on 15th June 2022, and 
ground-based images were captured for citrus tree phenotyping. The 
imaging equipment consisted of a SONY ILCE-5100, a 24.3-megapixel 
digital camera (6000 × 4000 pixels), and a 35 mm camera lens. In ad-

dition, the field imagery was captured under natural lighting conditions 
using a color checker for accuracy. Images were taken from both sides 
of each tree using two different protocols. In the first protocol, a cam-

era was placed close to the tree (between 50 cm and 80 cm away) to 
capture small green citrus fruits. The camera settings were as follows: 
Focal length: 35 mm, Aperture: f/10.0, ISO: AUTO, and Exposure time: 
1/400 s. The ground resolution of the images was approximately be-

tween 0.1784 and 0.179 mm per pixel.

For the second protocol, the goal was to capture the entire tree in 
a single image. This would allow us to address the challenge of detect-

ing and segmenting small, unripe citrus fruits that blend with foliage in 
complex agricultural environments. To achieve this, the camera was po-

sitioned 3 meters from the tree, and the following settings were used: 
Focal length of 18 mm, Aperture of f/10.0, ISO: AUTO, and Exposure 
time of 1/400 s. The ground resolution of the images ranged from ap-

proximately 0.0348 to 0.0346 cm per pixel.

Figs. 2 present an example of images taken using the two protocols.

Citrus fruits typically grow in clusters along branches, often partially 
occluded by dense foliage, and their spatial distribution is significantly 
variable. The fruits’ size and visibility depend on their growth stage, 
with smaller, unripe fruits often blending with the surrounding green-

ery. These growth characteristics, combined with environmental factors 
such as varying light intensities, shadows, and background complexity, 
make citrus fruit detection particularly challenging in orchard environ-

ments.

The dataset used in this study was carefully designed to reflect these 
real-world growth distributions and environmental conditions while 
also capturing diversity in citrus varieties. It includes close-up and full-

tree images from three distinct citrus varieties. These varieties exhibit 
differences in fruit size and canopy structure, comprehensively repre-

senting the variability found in citrus orchards. This diversity ensures 
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Fig. 1. Overall process flowchart of small green citrus fruits detection and segmentation. 

Fig. 2. Examples of images collected: (a) Using the first protocol. (b) Using the second protocol. 

the algorithm is trained and tested across various scenarios, improving 
its robustness and adaptability. Key features of the dataset include:

• Variety-driven variability: By incorporating multiple citrus vari-

eties, the dataset reflects differences in fruit clustering, density, and 
canopy complexity, allowing the framework to generalize across di-

verse orchard setups.

• Fruit clustering and variability: The dataset contains images with 
fruits in dense clusters, isolated instances, and overlapping config-

urations, testing the algorithm’s ability to handle varying spatial 
distributions.

• Foliage density and occlusion: Images with varying levels of foliage 
density were included to assess the framework’s capability to detect 
partially and fully occluded fruits.

• Environmental diversity: The dataset captures diverse environmen-

tal conditions, including bright sunlight, shaded areas, and tran-

sitional lighting, mimicking the variability seen in real-world or-

chards.
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Table 1
Description of the dataset created using the first image taking protocol.

Total Number 
of Images 

Total Number 
of Citrus Fruits 

Average Citrus 
Fruits per Image 

Minimum Citrus 
Fruits per Image 

Maximum Citrus 
Fruits per Image 

Train Dataset 300 1068 3 1 12 
Validation Dataset 69 247 3 1 15 
Test Dataset 30 94 3 1 10 

Fig. 3. Annotated image of small green citrus fruits with yellow masks. 

2.3. Dataset preparation

The images taken in the first protocol were annotated using the tool 
Roboflow.2 A total of 399 unique images representing all varieties were 
annotated using bounding boxes on each citrus fruit. The initial aim was 
to develop a model for detecting citrus fruits in full tree images using 
object detection techniques. However, the model failed to detect the 
fruits accurately due to their size and color. To improve detection and 
segmentation, Facebook’s “Segment Anything” model [18] was adopted.

The SAM model is a groundbreaking tool that offers both versatil-

ity and efficiency. It can accurately segment objects, even in complex 
scenes, significantly reducing the manual effort and time required for 
annotation. A range of studies have explored the Segment Anything 
Model (SAM) applications in various fields. Cheng et al. [6] introduces 
SAM-Track, a framework for precise object segmentation and tracking 
in videos, with applications in drone technology, autonomous driv-

ing, medical imaging, augmented reality, and biological analysis. Sun 
et al. [33] demonstrates the potential of SAM in weakly-supervised se-

mantic segmentation, achieving impressive results on PASCAL VOC and 
MS-COCO datasets. Finally, the 399 images were re-annotated using 
masks, as presented in Fig. 3, segmenting over 1400 citrus fruits.

All images were thoughtfully combined into a unified dataset to train 
the model on a broad spectrum of variations. This careful consolidation 
allowed the model to learn a diverse range of features, thereby enhanc-

ing its overall learning experience. The dataset was then organized into 
separate segments for training, validation, and testing, ensuring a com-

prehensive framework for effective model training. The resulting dataset 
was saved in COCO format. A detailed overview of the data distribution 
is provided in Table 1.

The second protocol is designed to systematically capture full images 
of trees, resulting in a comprehensive total of 48 images. For each vari-

ety, 16 unique high-resolution images are selected, ensuring a thorough 
representation by photographing both sides of each tree.

2.4. Methodology

The proposed framework is designed to identify, segment, and count 
small green citrus fruits in their early stage. It comprises two main mod-

ules: The first module focuses on training a deep-learning model for de-

2 https://roboflow.com/.

tection and segmentation, utilizing annotated images captured through 
the first image-taking protocol to ensure maximum accuracy. The cho-

sen model is the Cascade Mask R-CNN with the MViTv2_L backbone. 
The second module is responsible for identifying and counting small 
green citrus fruits in full tree images, which are taken using the sec-

ond image-taking protocol. This module comprises three components: 
Slicing, Segmentation and counting, and Joining. Fig. 4 presents an 
overview of the proposed framework.

2.4.1. Model’s architecture

The framework is based on Cascade Mask R-CNN. With its multi-

stage refinement and combination of classification, localization, and seg-

mentation losses, the Cascade R-CNN framework ensures that the model 
progressively improves its detection and segmentation capabilities. This 
comprehensive approach allows for high-quality object detection and 
instance segmentation, addressing the challenges of precise localiza-

tion and segmentation in complex scenarios. Additionally, selecting the 
Transformers as the backbone for this model presents a strategic en-

hancement. Transformers, known for their exceptional performance in 
capturing long-range dependencies and contextual information, com-

plement the Cascade Mask R-CNN’s hierarchical structure. This combi-

nation leverages the strengths of both architectures: the transformers 
provide a robust feature extraction mechanism, enhancing the model’s 
understanding of spatial relationships, while the Cascade Mask R-CNN 
excels in precise object detection and instance segmentation. The choice 
was then a powerful transformer called MViTv2.

Multiscale Vision Transformers version 2 (MViTv2) represents a sig-

nificant advancement in computer vision, especially in tasks requiring 
nuanced detail recognition. MViTv2, an extension of the initial Mul-

tiscale Vision Transformers [9], leverages a hierarchical transformer 
architecture designed to handle diverse image resolutions effectively. 
This design enables the model to capture fine-grained details at mul-

tiple scales, making it particularly suitable for complex tasks such as 
detecting and segmenting small or densely packed objects in cluttered 
scenes [20].

One of the key enhancements in MViTv2 is its improved efficiency 
in processing high-dimensional data, achieved through optimizations in 
its attention mechanisms and scaling strategies [20]. Due to the dense 
coverage of the tree leaves, the MViTv2 L backbone was opted for using 
stronger large-scale jittering training [11]. Fig. 5 displays the adopted 
model’s architecture.

2.4.2. Model training and evaluation

This study was implemented using Python 3.9 and Pytorch 2.0 frame-

work. All the models were trained in Google Colab A100-SXM4-40GB 
GPU. The Cascade Mask R-CNN model is implemented using Detec-

tron2, a powerful software system developed by Facebook AI Research 
(FAIR) [37]. Detectron2 is an upgraded version of Detectron, coded in 
PyTorch with a more modular design. It can implement advanced algo-

rithms such as Faster R-CNN, Mask R-CNN, RetinaNet, and DensePose. 
Its heightened flexibility and extensibility have made it FAIR’s most pop-

ular open-source project. After several trials and errors, the model was 
trained for 2000 iterations.

Due to the limited availability of datasets, transfer learning has be-

come a popular approach to train deep learning models more efficiently 
and stably [34]. By leveraging pre-trained MViTv2 features from Ima-

geNet21k, which consists of 21,843 object categories and 14 million im-

ages at resolution 224x224, state-of-the-art results have been achieved 
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Fig. 4. Overview of the proposed framework. 

Fig. 5. Schematic diagram of Cascade Mask R-CNN model. “Backbone” is the transformer-based backbone, “pool” is region-wise feature extraction, “H” is the network 
head, “B” is the bounding box, and “C” is the classification. “B0” refers to proposals in all architectures. “S” denotes a segmentation branch.

in various image processing tasks, ranging from image classification to 
image captioning. Fine-tuning the pre-trained model’s layers with the 
labeled citrus fruits image is necessary.

Data augmentation is necessary to improve the dataset for training, 
as it increases the number of images while maintaining quality [28]. 
Data augmentation was applied using the defined functions:

• RandomFlip: Flip the image horizontally or vertically with the given 
probability.

• ResizeScale: Takes target size as input and randomly scales the tar-

get size between min_scale of 0.1 and max_scale of 2.0. It then scales 
the input image to fit inside the scaled target box, keeping the as-

pect ratio constant.

• FixedSizeCrop: Crop a region out of an image with a fixed crop_size 
of [1024, 1024].

Hyperparameters play a pivotal role in the training and performance 
of deep learning models, and Cascade Mask R-CNN is no exception. In 
Cascade Mask R-CNN, hyperparameters, such as learning rate, batch 

size, weight decay, and anchor scales, significantly influence the net-

work’s convergence rate, adaptability to the dataset, and detection and 
segmentation accuracy. Several hyperparameters were fine-tuned in the 
experiments to better align with this study’s dataset characteristics. The 
learning rate was set to 0.0001, with a weight decay 0.0001 and AdamW 
[22] as the optimization method.

The loss calculation for Cascade Mask R-CNN is derived from the 
Faster R-CNN architecture’s multi-stage extension, Cascade R-CNN [21]. 
The main objective of Cascade R-CNN is to enhance object detection 
by progressively refining bounding box predictions through multiple 
stages. Each stage in the cascade is trained to handle progressively 
higher Intersection over Union (IoU) thresholds, which helps achieve 
better object localization.

For each stage 𝑡, the total loss is a combination of the classification 
loss 𝐿cls and the localization loss 𝐿loc:

𝐿𝑡 =𝐿cls(ℎ𝑡(𝑥𝑡), 𝑦𝑡) + 𝜆[𝑦𝑡 ≥ 1]𝐿loc(𝑓𝑡(𝑥𝑡, 𝑏𝑡), 𝑔), (1)

where ℎ𝑡 is the classifier, 𝑓𝑡 is the regressor, 𝑥𝑡 represents the input, 𝑦𝑡
is the label under the IoU threshold 𝑢𝑡, 𝑏𝑡 is the predicted bounding box, 
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and 𝑔 is the ground truth bounding box. The indicator function [𝑦𝑡 ≥ 1]
ensures that the localization loss is only applied to positive samples. The 
classification loss 𝐿cls is typically computed using cross-entropy loss, 
while the localization loss 𝐿loc is computed using the smooth L1 loss on 
the bounding box coordinates.

In the Cascade Mask R-CNN, an additional segmentation loss 𝐿seg is 
introduced for instance segmentation:

𝐿seg(𝑚𝑡, 𝑠𝑡), (2)

where 𝑚𝑡 is the predicted mask and 𝑠𝑡 is the ground truth segmentation 
mask. This segmentation loss is typically computed using binary cross-

entropy or a similar pixel-wise loss function. The segmentation branch 
can be added at the first stage, at the last stage, or each stage of the Cas-

cade R-CNN, and the final mask prediction is obtained from the single 
or ensemble segmentation branches, depending on the architecture.

The losses from different stages are combined using schemes such as 
“average” (average) and “decay.” In the “average” scheme, the loss of 
each stage receives an equal weight, whereas, in the “decay” scheme, 
the loss of each stage is weighted, giving more importance to earlier 
stages in training. The total loss across all stages is combined to optimize 
the model progressively. The average scheme for loss combinations was 
adopted, as originally used in the Detectron2 implementation of Cascade 
Mask R-CNN.

The predicted segmentation masks in the output images were ob-

tained from the trained Cascade Mask R-CNN and put for further analy-

sis. The aim was to evaluate the effect of the different backbone parts in 
the Cascade Mask R-CNN mask. This analysis used two metrics: average 
precision (AP) and IoU. IoU is a crucial metric used to assess segmenta-

tion models [42], commonly referred to as Jaccard’s Index. This metric 
quantifies how effectively the model can distinguish objects from their 
backgrounds in an image.

The Intersection over Union (IoU) between the ground-truth fruit 
region, 𝐴𝑔𝑡, and the predicted fruit region, 𝐴𝑝, was calculated as follows:

𝐼𝑜𝑈 (𝐴𝑔𝑡,𝐴𝑝) =
𝐴𝑔𝑡 ∩𝐴𝑝

𝐴𝑔𝑡 ∪𝐴𝑝

(3)

One of the most crucial evaluation indicators for measuring the ob-

ject detection model’s performance is mean average precision (mAP), 
which can effectively evaluate the locating performance of the model. 
In order to assess the performance of the model, the official COCO eval-

uation metrics in Python were employed, including AP50 and AP75, 
defined as follows:

1. AP at IoU = 0.5 (AP50)This version of the AP metric evaluates av-

erage precision when the Intersection over Union (IoU) threshold is 
set at 0.5. A higher IoU threshold means stricter evaluation criteria 
and an IoU of 0.5 is commonly used for many detection tasks.

2. AP at IoU = 0.75 (AP75): This is similar to AP50 but uses a more 
stringent IoU threshold of 0.75, focusing on tighter bounding box 
matches.

All experiment results were obtained at a threshold of IoU = 0.5. 
These metrics offer a thorough evaluation of bounding box and mask an-

notations. However, to guarantee the accuracy of the predicted count, it 
was cross-referenced with the count determined by an expert. By utiliz-

ing both approaches, the models may then be assessed more accurately.

2.4.3. Segmentation and counting module

Due to the size and color of the citrus fruits, the model trained may 
not be able to detect and segment all fruits. The challenge of diminished 
model accuracy when analyzing full-tree images for citrus fruit detection 
was addressed using the slicing strategy. When slicing the image into 
many parts, the model will treat and analyze each slice as one large 
single image and try to detect all citrus in it.

In addition, another advantage of the slicing approach is the slice 
size: the full image will have a large size and may consume more time 

and energy for detection and counting; however, when slicing, the new 
image fragments will have reduced size, making it quicker and easier 
for the model to detect and count the fruits. This division is crucial as it 
counteracts the issues related to scale and complexity inherent in full-

tree images, which often lead to reduced detection accuracy.

By focusing on smaller sections of the image, the model can more ef-

fectively apply its detection capabilities, as each segment presents the 
fruits and foliage in greater detail and less cluttered contexts. This strat-

egy ensures that the vast and varied background of full-tree images does 
not overshadow the nuances and characteristics of tiny citrus fruits.

When analyzing the literature, the SAHI (Slicing Aided Hyper In-

ference) framework Akyon et al. [1] was first adopted. This approach 
is centered around image slicing, where large images of entire trees 
are methodically divided into smaller, more manageable segments. The 
SAHI framework relies on slicing the images for analysis based on some 
parameters that need to be defined to adjust the inference. The concept 
of sliced inference is basically performing inference over smaller slices 
of the original image and then merging the sliced predictions on the 
original image.

SAHI (Slicing Aided Hyper Inference) Akyon et al. [1] is a technology 
known for its precision in detecting small objects with high accuracy. 
However, two primary challenges must be addressed: inference time and 
instance segmentation.

For inference time, SAHI’s performance slows significantly when pro-

cessing high-resolution images, primarily due to the size of the image. 
The inference time can be substantial, with some reports indicating it 
can take up to 30 minutes to process a single image. This prolonged pro-

cessing time is influenced by the need to determine the optimal size for 
image splits. Larger images require more computational resources and 
time, making real-time application impractical in its current form.

The second challenge pertains to instance segmentation. SAHI aims 
to extract comprehensive information and features from detected ob-

jects, such as citrus fruits. However, achieving high-quality instance 
segmentation with SAHI can be difficult. The technology struggles to 
provide detailed feature extraction, which is crucial for applications re-

quiring precise object identification and classification.

The proposed segmentation and counting module is meticulously 
designed to deliver accurate results while significantly reducing process-

ing time. This advanced module comprises several integral components, 
each contributing to the efficiency and precision of the overall process.

The first component is a slicing mechanism that divides the input 
image into uniformly sized tiles. This tiling approach ensures that each 
segment is manageable for more precise detection and segmentation. 
Once the image is divided, the model trained in the previous module is 
employed to process each tile individually. The segmentation and count-

ing component of the module performs two critical tasks. Initially, it 
detects and segments the citrus fruits within each tile, drawing masks 
over each detected fruit to visually delineate them. This visual segmen-

tation is crucial for accurate counting and further feature extraction. 
Following the segmentation, the module extracts essential features from 
each detection. These features include the size of each mask, the loca-

tion coordinates of each detected citrus fruit, and a unique ID for each 
fruit. All this detailed information is systematically exported into a CSV 
file, creating a comprehensive dataset for further analysis.

The final step of the module is the ‘joining’ process. All the tiles, 
now drawn with masks, are reassembled to form a complete image. This 
step is crucial for maintaining the visual integrity of the original image, 
which is now enhanced with detailed segmentation data. The module’s 
tasks culminate in recording the total count of citrus fruits detected in 
each processed image. This count is then saved into another CSV file, 
providing an easily accessible record of the fruit count for each image.

3. Results

This study evaluates the proposed framework using two distinct im-

age protocols. The first module focuses on close-up images, where the 
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Table 2
Results of AP metrics on the testing dataset using different backbones.

Backbone
mAP AP50 AP75 
Bbox % Mask % Bbox % Mask % Bbox % Mask % 

Swin_L 55.863 64.869 88.283 86.203 65.247 73.078 
ViTDet_L 68.515 83.849 93.797 92.566 87.399 91.767 
MViTv2_L 72.97 84.40 98.60 96.18 93.13 95.175

model is trained to detect and segment citrus fruits with high preci-

sion, capturing fine-grained details despite challenges like occlusions 
and complex textures. The second module evaluates the framework on 
full-tree images, leveraging the dual-image strategy and image-slicing 
techniques to address challenges such as dense foliage, overlapping 
fruits, and varying environmental conditions.

The results highlight the framework’s robustness and adaptability 
across both protocols, showcasing its ability to perform effectively un-

der diverse scenarios. The following subsection, Model Training Module 
Results, provides a detailed analysis of the framework’s performance on 
close-up images.

3.1. Model training module results

At the completion of 2,000 iterations, the detection training accuracy 
was determined to be 98.8%, 99.0%, and 99.3% for stages 1, 2, and 3, 
respectively. The segmentation training accuracy was 96.7%. The total 
loss was 0.75.

A comparative analysis of various backbone models was then per-

formed to assess the performance and robustness of the MViTv2 model. 
This analysis is essential for determining which backbone provides the 
highest accuracy and efficiency for object detection and segmentation 
tasks. Table 2 presents the Average Precision (AP) metrics on a test-

ing dataset for different backbone models used in object detection and 
segmentation tasks. The backbones evaluated are Swin_L, ViTDet_L, and 
MViTv2_L, with the metrics divided into three categories: mAP, AP50, 
and AP75, each further split into bounding box (Bbox) and mask results.

From the table, MViTv2_L demonstrates superior performance across 
all metrics compared to the other backbones. For instance, it achieves 
the highest mAP scores for both bounding box (72.97%) and mask 
(84.40%) categories. Similarly, it records the highest values for AP50 
with 98.60% for bounding box and 96.18% for mask, as well as for 
AP75 with 93.13% for bounding box and 95.175% for mask. In con-

trast, Swin_L performs lowest in all categories, indicating that MViTv2_L 
is the most effective backbone among those tested for object detection 
and segmentation tasks in this dataset, consolidating the choice for the 
detection and segmentation model.

The Figs. 6 illustrate the difference in detection for the three back-

bones. The images provided compare actual instances of fruit detection 
with predictions made using three different backbone models: MViTv2, 
Swin, and ViTDet. Each set of images includes an actual instance on the 
left and a predicted instance on the right.

In the first pair of images (Fig. 6a), derived from the Swin backbone, 
the predicted instance identifies multiple objects as fruits with varying 
confidence levels, illustrating the model’s ability to detect multiple in-

stances. However, some detections have lower confidence percentages, 
suggesting potential inaccuracies and false positives.

The second pair of images (Fig. 6b), related to the ViTDet backbone, 
the actual instance again shows a fruit among the leaves. The predicted 
instance identifies multiple fruits with bounding boxes and masks of 
different colors. This indicates that the ViTDet model can detect multiple 
objects, but some detections are less confident and may not be entirely 
accurate, similar to the Swin backbone.

In the third pair of images (Fig. 6c), generated using the MViTv2 
backbone, the actual instance shows a single fruit among the leaves. 
The predicted instance correctly identifies and highlights the fruit with 
a bounding box and a mask, indicating high confidence (100%). This 

demonstrates MViTv2’s strong capability in accurately detecting the 
fruit. Moreover, the MViTv2 model’s strength is shown by the ability 
to detect and segment fruits not annotated in the testing dataset.

3.2. Segmentation and counting module

The proposed model’s performance was compared to the manual 
counting of citrus fruits within visible images. The accuracy of the cit-

rus counting was measured using the coefficient of determination (R2), 
the root mean squared error (RMSE), the relative RMSE (rRMSE), and 
the bias:

RMSE =

√√√√1
𝑛 

𝑛 ∑
𝑖=1 

(𝑦𝑖 − �̂�𝑖)2 (4)

rRMSE =
(

RMSE

𝑦

)
× 100 (5)

Bias = 1
𝑛 

𝑛 ∑
𝑖=1 

(�̂�𝑖 − 𝑦𝑖) (6)

where 𝑛 is the number of observations, 𝑦𝑖 is the actual value, �̂�𝑖 is the 
predicted value, and 𝑦 is the mean of the actual values.

To assess this module thoroughly, the model’s detection performance 
on complete tree images was first examined with and without the slicing 
technique. The first step is applying the detection model trained in the 
previous module to the full tree images without slicing them. Fig. 7
presents the accuracy metrics’ results.

Based on the results shown in the figure, there is a low correlation 
between the manual count and the predicted count when applying the 
model to full tree images (R2 = 0.51). Moreover, the Bias is significantly 
high, with a value of -46.58, explaining the high underestimation of the 
citrus count when using the model. This proves the low accuracy of 
detection and segmentation of the model when used on full tree images.

The slicing strategy proposed in the module is then tested. For the 
first trial, the number of slices is set to 4 tiles per image. Fig. 8 illus-

trates the linear regression between the proposed model and the manual 
count tested on the 48 full trees images. The results showed a high 
correlation between the proposed framework’s counting and the man-

ual image-based counting. The model trained in the first module has 
a higher coefficient of determination and lower RMSE and rRMSE (R2 
= 0.80, RMSE = 12.24, rRMSE = 15.62%), indicating that the model 
was closer to the visual observation. In addition, the bias value of -6.75 
shows a slight underestimation of the number of citrus fruits compared 
to the visual assessment.

In order to gain a better understanding of the model’s performance, 
the metrics for each variety were analyzed using the same number of 
slices (4S), which are illustrated in Fig. 9. Significant variations were 
observed in all metrics for each variety, with R-squared ranging from 
0.58 to 0.81. Additionally, differences in Bias were noted, specifically an 
underestimation of count in both Nules grafted on Volka and Sidi Aissa 
grafted on Volka, as opposed to an overestimated count in Orogrande 
grafted on sour orange.

In this study on how different numbers of slices affect the module’s 
performance, tests with various slicing values were conducted. Table 3
summarizes the impact of the number of slices on the framework per-

formance, where NS presents the N number of slices per image, NsV 
represents Nules grafted on Volka, SIsV for Sidi Aissa grafted on Volka, 
and OsB for Orogrande grafted on sour orange.

The last step in this module involves Joining. During this step, the 
process of splitting the image is reversed to recombine the tiles into a 
single image complete with drawn segmentation, along with a CSV file 
containing the final count. Fig. 11 displays an example of the resulting 
combined image from the processed tiles presented in Fig. 10.
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Fig. 6. Results of Model Training Module using Cascade Mask R-CNN with (a) Swin backbone, (b) ViTDet backbone, and (c) MViTv2 backbone. 

Fig. 7. Comparison of the number of citrus fruits visually counted on the full tree image with the number of fruits detected by the proposed model for all varieties: 
red dots represent Nules grafted on Volka, blue crosses represent Sidi Aissa grafted on Volka, and green squares for Orogrande grafted on sour orange.
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Fig. 8. Comparison of the total number of citrus fruits visually counted on the image with the number of fruits detected by the proposed slicing technique for all 
varieties: red dots represent Nules grafted on Volka, blue cross for Sidi Aissa grafted on Volka, and green squares for Orogrande grafted on sour orange.

Fig. 9. Comparison of visually counted citrus fruits with detected fruits for each variety: NsV represents Nules grafted on Volka, SIsV for Sidi Aissa grafted on Volka, 
and OsB for Orogrande grafted on sour orange.

Table 3
Comparison of manually counted citrus per image and the number es-

timated by the proposed framework for three varieties with different 
numbers of slices.

Metric 4S 6S 9S 12S 16S 

NsV

𝑅2 0.81 0.81 0.92 0.93 0.87 
RMSE 10.48 11.33 6.41 6.27 8.25 
rRMSE 11.69% 12.64% 7.15% 7.00% 9.20% 
Bias -8.44 -6.06 -14.25 -12.38 -13.38

SIsV

𝑅2 0.79 0.76 0.83 0.81 0.82 
RMSE 12.18 13.29 12.47 13.58 13.50 
rRMSE 12.86% 14.04% 13.17% 14.34% 14.26% 
Bias -13.50 -13.19 -18.00 -16.00 -16.38

OsB

𝑅2 0.58 0.63 0.81 0.80 0.74 
RMSE 12.78 12.64 7.60 8.21 8.51 
rRMSE 25.15% 24.88% 14.96% 16.15% 16.75% 
Bias 1.69 2.00 -11.12 -10.25 -12.12 

4. Discussion

This study proposed a novel framework integrating MViTv2 and 
Cascade Mask R-CNN to enhance citrus fruit detection and segmenta-

tion in dense orchard environments. The research made several key 

Fig. 10. Example of 9 tiles processed before joining. 

assumptions: The dataset, comprising close-up and full-tree images of 
three citrus varieties, was assumed to represent real-world orchard con-

ditions sufficiently. This included light variations, dense foliage, and 
occlusions, although extreme scenarios such as harsh weather or sig-

nificant spatial differences between orchards were not comprehensively 
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Fig. 11. Example of a resulting composite image after joining tiles. 

covered. Additionally, the dual-image strategy assumed that features 
learned from close-up images could generalize effectively to full-tree 
images, enabling robust performance during testing. These assumptions 
provided a practical foundation for the study but highlighted the impor-

tance of expanding datasets and testing conditions for future work.

Several lessons were learned throughout the development and eval-

uation process. Integrating MViTv2 improved the framework’s ability to 
capture fine-grained details, enabling accurate detection of small fruits 
obscured by foliage. The image-slicing technique further enhanced seg-

mentation by focusing on localized image regions, significantly improv-

ing precision in challenging conditions. These innovations ensure that 
the framework can effectively adapt to the variability of citrus growth, 
environmental conditions, and varietal differences.

An important aspect of this framework is its design for practical, 
easy-to-use applications, such as deployment on smartphones or devices 
with simple setups, making it accessible for orchard managers, farmers, 
and citrus producers. By enabling early and accurate detection of citrus 
fruits using affordable and portable devices, this framework addresses 
a critical need in precision agriculture for scalable and cost-effective 
solutions. Using a dual-image strategy and image-slicing ensures the 
model is lightweight enough to be integrated into applications suitable 
for on-site use, making it a practical tool for real-time decision-making, 
including yield forecasting, without requiring expensive or complex 
equipment.

Building upon the assumptions and lessons learned, a detailed anal-

ysis of the framework’s performance, along with its strengths and lim-

itations, provides deeper insights into its applicability and areas for 
improvement. The following subsections comprehensively evaluate the 
framework and discuss the challenges and opportunities for further de-

velopment.

4.1. Framework analysis

Throughout this paper, an AI-based framework was proposed that 
helps detect and segment small green citrus fruits in dense foliage at a 
very early stage. In the framework’s first module, different backbones 
were compared to understand their influence on the performance of 
the Cascade Mask R-CNN model. As presented in Table 2, MViTv2_L 
achieved the highest performance compared to Swin_L and ViTDet_L 
across all metrics. This outcome points to the unique architectural de-

sign and training strategy as the key factors in the model’s performance.

The chosen model demonstrated high performance with exceptional 
AP values during the evaluation. Nevertheless, a discrepancy between 
the actual and predicted counts was observed when the model on full 
tree images was tested. The correlation between the estimated and ac-

tual count was relatively poor, as presented in Fig. 7. Thus, the proposed 
slicing technique significantly improves the detection of green citrus 
fruits in full tree images (Fig. 8).

Furthermore, the variations in R2 and other evaluation metrics 
among the three varieties can be attributed to their size and growth 
stage factors. Notably, the Nules grafted on the Volka variety exhibits 
the highest R2 compared to the other varieties. This can be attributed 
to the fact that the Nules grafted on Volka variety entered the flower-

ing stage earlier, on March 1st, 2022, while Sidi Aissa grafted on Volka, 
began flowering 15 days later, and Orogrande grafted on sour orange, 
started flowering on April 1st. These differences in flowering dates sig-

nificantly impacted the citrus fruit size, resulting in noticeable variation 
in the detection, as shown in Fig. 9, making the model growth stage sen-

sitive.

After assessing the impact of different slicing numbers on the mod-

ule’s performance (Table 3), it was observed that using 9 slices improved 
the detection and counting of citrus for both Sidi Aissa grafted on Volka 
and Orogrande grafted on sour orange, with R2 values of 0.83 and 0.81, 
respectively. However, for Nules grafted on Volka, the findings showed 
that 12 slices per image slightly outperformed 9 slices. Upon visual in-

spection, the detections were inaccurate despite the higher estimated 
number of citrus using 12 slices. Increased slicing led to overlapping, 
resulting in repeated counting, as illustrated in the Fig. 12.

These observations revealed that while 12 slices exhibited higher 
metric values compared to 9 slices, the latter demonstrated superior 
accuracy in detecting citrus fruits. In contrast, 12 slices resulted in 
significantly more false positives. Fig. 13 provides an example of the 
difference in detection between 9 slices and 12 slices, where two citrus 
fruits were accurately detected using the 9 slices strategy, resulting in 
the high performance of 9 slices techniques compared to the other slices 
numbers.

Overall, the 9 slices performed significantly better in accurately de-

tecting and counting all varieties, despite differences in citrus’ growth 
stages and sizes. This improvement demonstrates the effectiveness of the 
slicing technique in enhancing the model’s counting accuracy.

Fig. 12. Example of two tiles of image using the 12S. The red arrows point to the citrus detected repeatedly in both tiles. 
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Fig. 13. Example of two tiles of the image with drawn citrus detection: (a) presents the detection in 9 slices, (b) presents the detection in 12 slices. The red circles 
show the difference in detection.

The literature shows diverse research on green citrus detection and 
counting in the expansive agricultural research and technology realm. 
He et al. [15] proposed a green fruit detection method named deep 
bounding box regression forest (DBBRF) for detecting green citrus fruits 
in natural environments and achieved a mAP of 87.60%, while Zheng 
et al. [41] proposed a method of green citrus detection using a deep con-

volutional neural network, combining the strength of multi-scale convo-

lutional neural network and YOLO, and achieved a mAP of 91.55%. Lyu 
et al. [24] proposed a YOLOv5-CS model combined with an AI edge sys-

tem for detecting and counting green citrus fruits. Their model achieved 
an mAP of 91.55%, accuracy of 86%, and recall of 91%. In addition, Lu 
et al. [23] presented a lightweight green citrus fruit detection model 
suitable for edge smart devices, achieving a mAP of 93.6%. These re-

sults exhibit the strength and high performance of the detection models. 
However, the images used for testing are very similar to the trained data, 
where the models detect and count citrus fruits in a close view of the 
tree, where citrus can be visible and easily detected. In addition, the 
models used are mainly based on object detection, unlike this study’s 
framework, in which instance segmentation was incorporated.

In the proposed framework, the tested images differ significantly 
from the training data, posing a considerable challenge for detection 
and counting, even to the human eye. The proposed framework aims 
to count the citrus fruits on the tree accurately and includes instance 
segmentation, which provides additional details such as the pixel size 
and precise location of each detected citrus fruit in the image. These 
noteworthy results represent an innovative approach to early-stage de-

tection, segmentation, and counting of citrus fruits.

4.2. Limitations and future perspectives

While the framework proposed in this paper demonstrates signifi-

cant advancements in citrus fruit detection and segmentation, it is not 
without limitations. One of the primary challenges lies in accurately de-

tecting and counting citrus fruits of varying sizes, especially when the 
size difference is substantial. Smaller fruits can be particularly difficult 
to detect, leading to undercounting, while larger fruits may be counted 
multiple times if they overlap with other elements in the image. Ad-

ditionally, shadows cast by foliage and branches create regions of low 
visibility, obscuring fruits and causing false negatives or false positives.

Another notable limitation is the handling of overlapped slices and 
the issue of sliced citrus fruits leading to incomplete information or 
repeated counting. When images are divided into slices to facilitate 
detection, there is a risk of counting the same fruit multiple times if 
it appears in more than one slice. This overlap can result in an over-

estimation of fruit counts. Conversely, if a fruit is partially visible in 
multiple slices but not fully captured in any single slice, it might not be 
counted, leading to underestimation. These challenges necessitate the 
development of more sophisticated algorithms capable of recognizing 
and reconciling these overlaps to ensure accurate counting.

Furthermore, increasing the number of slices enhances the accuracy 
of detection but also significantly increases the processing time, making 
the system less efficient. This trade-off between accuracy and processing 
speed is a critical limitation, especially for real-time applications. Future 
solutions could involve optimizing the slicing strategy to balance accu-

racy and efficiency, possibly through adaptive slicing techniques that 
vary based on image complexity.

Future research should focus on several key areas to address these 
limitations. First, enhancing the model’s ability to differentiate be-

tween individual fruits and their segments by integrating more advanced 
image-slicing techniques can mitigate issues related to overlapped slices. 
In addition, future work will focus on augmenting the dataset with more 
diverse environmental conditions, such as varying light intensities and 
weather scenarios. Finally, exploring the potential of other machine 
learning architectures may also offer new insights and improvements 
in fruit detection and counting accuracy. These advancements will pave 
the way for more reliable and accurate fruit detection systems in real-

world agricultural applications.

5. Conclusion

In modern agricultural research, instance segmentation is a vital tool 
for enhancing the accuracy and precision of crop analysis. This is partic-

ularly important for citrus fruits, where detailed information about each 
fruit’s size, location, and segmentation is crucial for assessing health, 
growth, and yield estimations.

The Cascade Mask R-CNN algorithm, paired with the MViTv2.L back-

bone, has proven highly effective. It excels in detecting and segmenting 
individual citrus fruits, providing precise masks invaluable for detailed 
phenotyping analyses and identifying potential anomalies or diseases. 
The backbone networks in Cascade Mask R-CNN are essential for fea-

ture extraction, which is critical for the model’s overall performance. 
The choice of the MViTv2.L backbone enhances the quality of features 
extracted from images, improving the accuracy and speed of the region 
proposal and segmentation processes. Given the unique characteristics 
of citrus fruits, such as their size, shape, and varying light conditions, 
selecting an appropriate backbone is vital for optimizing segmentation 
accuracy.

However, the intricate nature of citrus orchards presents challenges 
for the Cascade Mask R-CNN model. The varying sizes, shapes, and over-

lapping of fruits, along with shadows from foliage, can impede accurate 
segmentation. Additionally, slicing the images to improve detection can 
lead to incomplete information or repeated counts, necessitating further 
model refinement and preprocessing techniques to enhance detection 
robustness.

This research introduced a novel framework using the MViTv2.L 
backbone and a slicing strategy. This approach significantly improved 
detection and segmentation accuracy by enabling the model to handle 
dense foliage and varying fruit orientations better. The slicing strat-

Smart Agricultural Technology 10 (2025) 100834 

11 



M. El Akrouchi, M. Mhada, M. Bayad et al. 

egy divides images into smaller sections, reducing the complexity of 
each segment and allowing for more precise identification and count-

ing of fruits. This method effectively mitigates the challenges posed by 
overlapping fruits and shadows, resulting in higher accuracy and more 
reliable segmentation.

In conclusion, integrating Cascade Mask R-CNN with the MViTv2.L 
backbone and a strategic slicing technique has shown promising results 
in citrus fruit detection and segmentation. Despite the challenges, these 
innovations represent a significant step forward in agricultural technol-

ogy, providing a robust tool for precise crop analysis. Future work will 
further refine these techniques and explore additional improvements to 
enhance model performance and applicability in various agricultural 
contexts.
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