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Abstract

Previous studies comparing sediment fingerprinting un-mixing models report large

differences in their accuracy. The representation of tracer concentrations in source

groups is perhaps the largest difference between published studies. However, the

importance of decisions concerning the representation of tracer distributions has not

been explored explicitly. Accordingly, potential sediment sources in four contrasting

catchments were intensively sampled. Virtual sample mixtures were formed using

between 10 and 100% of the retrieved samples to simulate sediment mobilization

and delivery from subsections of each catchment. Source apportionment used models

with a transformed multivariate normal distribution, normal distribution, 25th–75th

percentile distribution and a distribution replicating the retrieved source samples. The

accuracy and precision of model results were quantified and the reasons for differ-

ences were investigated. The 25th–75th percentile distribution produced the lowest

mean inaccuracy (8.8%) and imprecision (8.5%), with the Sample Based distribution

being next best (11.5%; 9.3%). The transformed multivariate (16.9%; 17.3%) and

untransformed normal distributions (16.3%; 20.8%) performed poorly. When only a

small proportion of the source samples formed the virtual mixtures, accuracy

decreased with the 25th–75th percentile and Sample Based distributions so that

when <20% of source samples were used, the actual mixture composition infre-

quently fell outside of the range of uncertainty shown in un-mixing model outputs.

Poor performance was due to combined random Monte Carlo numbers generated for

all tracers not being viable for the retrieved source samples. Trialling the use of a

25th–75th percentile distribution alongside alternatives may result in significant

improvements in both accuracy and precision of fingerprinting estimates, evaluated

using virtual mixtures. Caution should be exercised when using a normal type
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distribution, without exploration of alternatives, as un-mixing model performance

may be unacceptably poor.

K E YWORD S

accuracy, Monte Carlo simulation, precision, sediment fingerprinting, sediment sources,

sediment tracing

1 | INTRODUCTION

Elevated fine-grained sediment mobilization and delivery degrades

water quality and aquatic ecology and increases the costs of potable

water treatment (Berry, Rubinstein, Melzian, & Hill, 2003; Bilotta &

Brazier, 2008; Collins et al., 2011; Jones, Collins, Naden, & Sear,

2012; Jones, Murphy, Collins, Sear, & Naden, 2012; Kemp, Sear, Col-

lins, Naden, & Jones, 2011; McDonald, Weber, Padowski, Boucher, &

Shemie, 2016). Effective management strategies therefore require

robust evidence on the nature and distribution of, and relative contri-

butions from, the principal sediment sources in river catchments

(Minella, Walling, & Merten, 2014). Here, existing methods for docu-

menting catchment sediment sources comprise both direct and indi-

rect approaches (Collins & Walling, 2004; Loughran & Campbell,

1995). Sediment source fingerprinting, a direct approach to confirming

sediment sources, is now increasingly seen as a globally applicable

tool (Krishnappan, Chambers, Benoy, & Culp, 2009; Miller, Mackin, &

Orbock Miller, 2015; Owens et al., 2016; Walling, 2013).

Pioneering sediment fingerprinting work was founded on qualita-

tive comparisons of source material and target sediment samples to

infer sediment sources (Klages & Hsieh, 1975; Wall & Wilding, 1976),

but from the 1980s and 1990s, mass balance un-mixing models

became the accepted means of estimating source contributions quan-

titatively (Collins, Walling, & Leeks, 1997; He & Owens, 1995; Wal-

den, Slattery, & Burt, 1997; Walling & Woodward, 1995; Walling,

Woodward, & Nicholas, 1993; Yu & Oldfield, 1989). When apportion-

ing sediment provenance using un-mixing models, most of the early

quantitative sediment source fingerprinting studies represented tracer

concentrations using a single mean or median value for each source

group (Collins et al., 1997; Walling & Woodward, 1992; Walling &

Woodward, 1995). At this time, there was only a limited assessment

of the uncertainties associated with the within-source group variabil-

ity in source tracer concentrations. The introduction of Monte Carlo

uncertainty routines into sediment source fingerprinting methodolo-

gies by Franks and Rowan (2000) and Rowan, Goodwill, and Franks

(2000) allowed for these uncertainties to be expressed explicitly in

modelled outputs and the inclusion of uncertainty routines has since

become the norm in robust source fingerprinting studies (Collins et al.,

2017; Walling, 2005, 2013). To date, numerous methods of rep-

resenting the distributions of tracers within sampled sediment source

groups have been used in Monte Carlo uncertainty routines. For

example, Motha, Wallbrink, Hairsine, and Grayson (2003) and Collins,

Walling, Webb, and King (2010) used source group means and stan-

dard deviations and this approach remains widely used in international

literature (e.g. Aliyanta & Sidauruk, 2019; Brosinsky, Foerster, Segl, &

Kaufmann, 2014; Chen, Fang, & Shi, 2016; Dahmardeh Behrooz,

Gholami, Telfer, Jansen, & Fathabadi, 2019; Gateuille et al., 2019).

Krause, Franks, Kalma, Loughran, and Rowan (2003), Wilkinson et al.

(2009); Wilkinson, Hancock, Bartley, Hawdon, and Keen (2013),

Haddadchi, Olley, and Pietsch (2015, 2016), Laceby and Olley (2015)

and Palazón et al. (2016) all used a Student's t-distribution which gave

more weighting to the tails of the distribution than a normal distribution

and was considered more appropriate when sample numbers were low.

Non-parametric estimators of location and scale such as median and

median absolute deviation (MAD) or either Qn (Collins, Walling, et al.,

2010) or Sn (Collins, Zhang, Walling, & Black, 2010) and the 25th–75th

percentile inter-quartile range have also been used (Pulley, Foster, &

Antunes, 2015). Qn and Sn are alternative more efficient scale esti-

mates to the MAD and not slanted towards symmetric distributions

(Rousseeuw & Croux, 1993). In some studies, distributions have been

constructed and repeat sampled for both source group samples and tar-

get sediment samples during un-mixing model uncertainty routines

(Collins, Walling, Webb, & King, 2010) with the sampling frequently

using Latin Hypercube routines for efficiency and effective sampling of

deviate tracer values (Collins, Zhang, Walling, et al., 2012; Collins,

Zhang, Walling, Grenfell, & Smith, 2010). Here, the 25th–75th percen-

tile range has the advantage that the distribution of tracers either side

of the median does not need to be symmetrical. An alternative

approach is to preserve the distribution provided by the tracer analyses

on the samples collected to characterize any given source sampled in

the study catchment in question, without using an estimator of scale

(e.g. Rousseeuw & Croux, 1993) for the distribution (Olley, Brooks,

Spencer, Pietsch, & Borombovits, 2013; Pulley & Collins, 2018a).

Over the past 20 years, studies adopting un-mixing models in sedi-

ment fingerprinting studies have primarily used frequentist approaches

based on maximum likelihood estimation (Davis & Fox, 2009; Walling,

2005; Walling, Collins, Jones, Leeks, & Old, 2006; Walling, Collins, &

Stroud, 2008; Haddadchi, Ryder, Evrard, & Olley, 2013; Owens et al.,

2016; Smith, Karam, & Lennard, 2018; Batista et al., 2019). More

recently, however, Bayesian un-mixing models have been experiencing

rapid uptake for sediment source fingerprinting purposes and offer

potential advantages over frequentist models such as the ability to use

informative priors and to include the uncertainty derived from an imper-

fect knowledge of factors such as the mean, variance and distribution of

variables (Davies, Olley, Hawker, & McBroom, 2018; O'hagan & Luce,

2003). Many Bayesian models, such as MixSIAR, assume a normal distri-

bution of tracers within potential sediment sources with the mean and

standard deviation values for each source group used as inputs

(Gateuille et al., 2019; Stock et al., 2018). A Bayesian model presented

by Cooper, Krueger, Hiscock, and Rawlins (2015) formed a multivariate
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normal distribution to represent the sources within the model; this dis-

tribution maintains any correlations between tracers which are present

in the retrieved source samples (Cooper, Krueger, Hiscock, & Rawlins,

2014). It is, however, often found that tracer concentrations in sediment

source groups are not normally distributed (Collins, Zhang, McChesney,

et al., 2012; Collins et al., 2013; Laceby, Huon, Onda, Vaury, & Evrard,

2016; Olley et al., 2013) which represents a major potential source of

uncertainty when a normal distribution is used. To address the potential

non-normality of source groups, tracer concentrations are often trans-

formed. For example, Batista et al. (2019) log-transformed the tracer

concentrations before forming the multivariate roughly normal distribu-

tions and then back-transformed using an exponential function during

the un-mixing model Monte Carlo simulations.

A number of studies have compared the errors associated with

different un-mixing model structures by apportioning the sources of

artificial and virtual mixtures (Haddadchi, Ryder, Evrard, & Olley,

2014; Palazón et al., 2015), yet limited explanations have been pres-

ented as to why some model structures deliver more accurate results

than others. Cooper et al. (2014) found that changes to model config-

uration such as the covariance structure used could exert a significant

effect on the results produced. Comparisons can also be complicated

by the use of conventional correction factors for particle size and

organic matter (e.g. Walling et al., 2006, 2008) in some procedures

which can introduce significant uncertainties (Smith & Blake, 2014),

meaning that their application must be assessed on a sample by sam-

ple basis (Collins, Walling, et al., 2010). In addition, Laceby and Olley

(2015) used artificial source mixtures to show that tracer weightings

can potentially decrease model accuracy. Overall, although un-mixing

model structures can include a variety of corrections and weightings

(Collins et al., 2017; Collins, Walling, et al., 2010; Walling, 2005) one

of the most important differences between un-mixing model struc-

tures concerns how the distributions of tracer concentrations in the

sampled source groups are represented.

When assessing which tracer distribution is likely to be optimal

for use, a key consideration is whether it is representative of tracer

concentrations present in catchment source groups. For example,

using an un-transformed normal distribution, when tracer concentra-

tions in catchment sources are not normally distributed, is likely to

result in source apportionment uncertainties which are unaccounted

for the Monte Carlo analysis. It is also often the case that the time

and budgetary resources of a study will limit the number of source

samples which can be retrieved and analysed, in turn, potentially limit-

ing the accuracy of the tracer distributions used as input for the un-

mixing model. A second major consideration here is that erosion and

sediment delivery are highly unlikely to be uniform throughout a

catchment and are likely to vary spatially and temporally depending

on hydrological conditions and slope-to-channel connectivity

(Bracken, Turnbull, Wainwright, & Bogaart, 2015; Fryirs, 2013). There-

fore, even with an unlimited number of source samples retrieved from

a catchment and their perfect representation within a Monte Carlo

routine, the sources of a specific sediment sample will likely not follow

a tracer distribution representative of concentrations present in entire

catchment-wide source groups. As a result, it is almost inevitable that

the source group tracer distributions used in an un-mixing model will

not be ideally suited to each target sediment sample being

fingerprinted. It is, however, little understood what effect this will

have on results and which type of distribution will have the most

accurate results when accounting for discrepancies between the

tracer distributions present in a catchment and those actually incorpo-

rated into the un-mixing model structure.

There are a number of potential advantages to the different distri-

butions available for modelling. Pulley et al. (2015) showed that a

large contrast in tracer concentrations between sources and low

within-source group variability was essential for minimizing uncer-

tainty in un-mixing model outputs. Therefore, using a tracer distribu-

tion with as narrow a range of values as possible, such as the 25th–

75th percentile range, will likely result in a lower uncertainty in the

model outputs. However, given that the mobilization and delivery of

sediment from individual sources is unlikely to be uniform throughout

the study catchment, meaning that highly localized sediment inputs

are a distinct possibility in some if not many storm events, there is a

significant risk that the actual sediment provenance could fall outside

of the uncertainty range produced by the un-mixing model if too nar-

row a tracer distribution is imputed into the model. Owing to the high

labour and financial costs of source material sample collection, prepa-

ration and analysis, most studies are limited in the number of source

samples which can be analysed and therefore use an assumed normal

distribution. Here, however, the presence of outliers with very high or

low tracer concentrations will likely cause a large range of values to

be generated in the Monte Carlo routine, resulting in a significant

increase in the uncertainty for modelled source apportionment. Due

to this risk, outliers have been removed as part of some sediment fin-

gerprinting procedures (e.g. Gellis et al., 2016) although a judgement

must clearly be made as to which samples are classified as outliers,

and this may become increasingly difficult when only a small number

of samples are retrieved for each source group included in the catch-

ment sampling strategy. This approach also forms a symmetrical distri-

bution either side of the mean which may not accurately represent

what is found in the catchment. The approach of using a distribution

matching that of the sampled sources (Olley et al., 2013; Pulley & Col-

lins, 2018a), without applying any estimators of location or scale,

appears to be a more robust solution since it is not as affected by out-

liers and can be a-symmetrical. A downside, however, is that it does

require very thorough source sampling and the analysis of large num-

bers of samples to ensure that the distributions used are truly repre-

sentative of natural tracer variability across space.

The above background clearly underscores a gap in existing interna-

tional literature meaning there is need for explicit consideration of the

impact on un-mixing model accuracy and precision, of different options

for constructing tracer distributions used as inputs. Accordingly, our

overarching aim was to understand how different tracer distributions

imputed into in a frequentist un-mixing model, with an uncertainty rou-

tine, affect the accuracy and precision of the results. In addressing this

aim, we compared un-mixing model performance using a transformed

multivariate normal distribution (TMV Normal), an untransformed

non-multivariate normal distribution (Normal), a 25th–75th percentile
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distribution (25th-75th) and a sample based distribution (Sample Based).

Virtual mixtures of the potential sediment sources in four study areas

were formed using subsets of the source sample datasets with between

10 and 100% of the source sampled included in each mixture. These

mixtures were aimed at simulating the effects of sediment mobilization

and delivery from only a small proportion of the area within each catch-

ment which will cause a mismatch between the tracer distribution incor-

porated into the un-mixing model and that of the target sediment

mixture being fingerprinted. More specifically, data from four intensively

sampled catchments were utilized for this analysis with three different

tracer types and multiple different source group classifications and com-

posite fingerprints. Importantly, the scope of this study is related to the

uncertainties associated with un-mixing modelling arising from the

choice of tracer distributions for end members and does not extend to

incorporating the uncertainties associated with sampling, sample

processing, tracer analysis or non-conservatism.

2 | STUDY SITES

Four river catchments (Figure 1) in different parts of the United King-

dom were selected for this study. These catchments have different

land uses and geologies (Table 1) requiring a different basis for source

discrimination using the trialled tracers. The catchment of Blockley

Brook (8.52 km2) is located at the village of Blockley in the Cotswold

district of Gloucestershire. It is characterized by a series of shallow

ditches and lakes forming most of the drainage network. Defined

channels with distinct channel banks are only present adjacent to and

downstream of Blockley village. Land use is a mix between woodland

in the centre of the catchment and cultivated fields primarily used for

cereals and legumes in the rest of the catchment. There is a small area

of grassland in the form of a formal lawn in the north west of the

catchment and areas of sheep and cattle grazing close to the village.

The village of Blockley covers much of the lower catchment; however,

the river channel does not flow directly through built up areas signifi-

cantly limiting the potential for sediment inputs from urban road dusts

which were therefore not considered as a source for this particular

study. The river channel backs onto gardens within the village provid-

ing little opportunity for urban road dusts to contribute to the sedi-

ment load. Catchment geology is composed primarily of limestone in

the upper catchment, with mudstones and mixed sand and mudstones

in the lower catchment.

The upper part of the River Lyne catchment (11.70 km2) selected

for this study is located in North West England close to the village of

Tritlington (Figure 1). Its land use is a mixture of cattle and sheep graz-

ing and cultivation for wheat. There is a pattern of cultivation domi-

nating in the eastern lower catchment and grassland in the western

upper catchment. Catchment geology is almost entirely composed of

uniform glacial till, with some small alluvial and glaciofluvial deposits

present. Channel banks are up to 2.5 m in height with clear evidence

of heavy cattle poaching of channel margins in the lower catchment.

The catchment of the lake, Semer Water (43.05 km2), is in the

Yorkshire Dales national park close to the village of Bainbridge

(Figure 1). The lake is 246 m above sea level and the watershed is a

maximum of 700 m, forming a steeply sloping catchment. Local geol-

ogy is composed of alluvium in the lower catchment close to the lake,

diamicton in valley bottoms, limestone on hillslopes and blanket peat

along the watershed. The alluvial deposits in the valley bottom close

to the lake are heavily waterlogged and form a wetland at the inlet to

the lake. Land use is rough grazing by sheep throughout most of the

catchment, but with more intensive sheep and cattle grazing in the

lower areas outside of the wetland. There is an area of commercial

forestry in the upper centre portion of the catchment. Channel banks

are generally very shallow (<20 cm) and formed primarily of rock; the

exception being some >2 m high banks in the wetland directly

upstream of the lake itself. Landslips are present throughout steeper

sloping areas over the diamicton geology, exposing the underlying

material and creating highly erodible deposits.

The Woodhill Brook catchment (4.4 km2) is located close to the

village of East Challow in Oxfordshire (Figure 1). Land use is domi-

nated by wheat and barley cultivation, with some small fields used for

light grazing or hay production present in the upper catchment adja-

cent to the village and overlying the greensand geology. The geology

in the remainder of the catchment is mudstones in the lower portion

and an outcrop of limestone at the highest ground in the south west.

The channel beds of the stream consist of an up to 30 cm deep layer

of thick anoxic mud which was considered to be a sediment source,

rather than a sink, due to the very large quantities of readily mobilized

material present. Channel banks were generally shallow (<30 cm) and

do not appear to be experiencing significant erosion in most locations.

A narrow corridor of woodland (<10 m diameter) separates cultivated

land from the river channel.

3 | MATERIALS AND METHODS

3.1 | Field sampling

In each catchment, efforts were made to achieve a high source sam-

pling density so that the sampled distributions of tracer concentra-

tions were representative of those present within the study areas.

Adequate sample numbers (Table S1) were also retrieved to create vir-

tual mixtures using the subsamples from each source dataset. Samples

of topsoils susceptible to erosion and sediment mobilization were

retrieved as a composite of five subsamples from within 5 m of each

individual sampling point. The samples were retrieved from the top

2–3 cm of the soil profile as this is the depth to which the most wide-

spread erosion processes (i.e. wash) are expected to operate (Collins

et al., 1997; Evans et al., 2016). Samples of channel banks were

retrieved from the bottom two thirds of the bank profiles to avoid the

collection of material more reflective of surface soils and in so doing

to help maximize source discrimination. Each sample was a composite

of approximately five subsamples taken from within 2 m of the indi-

vidual sampling site. Within the Semer Water catchment, large land-

slips have exposed deposits of erodible material which were sampled

to the depth of approximately 10 cm after the top 1 cm of surface

4 PULLEY ET AL.



material was removed to avoid contamination from displaced topsoils.

Samples of the channel bed mud deposits in the Woodhill study

catchment were retrieved as a grab sample to a depth of approxi-

mately 20 cm.

3.2 | Laboratory analyses for sediment tracers

The source material samples were initially oven dried at 105�C, before

being disaggregated using a mechanical pestle and mortar. Samples were

F IGURE 1 The four study catchments showing geology and source sampling locations with their associated land uses. Note that the land
uses shown are the simplified groups used in the sediment source fingerprinting exercise

PULLEY ET AL. 5



then dry sieved to <63 μm through a stainless-steel mesh before being

wet sieved to <25 μm using de-ionized water. This decision was based

on the particle size distribution data of retrieved suspended sediment

samples and a preliminary analysis of the tracer – particle size relation-

ships of bulked source samples. The prepared samples were then oven

dried at 105�C once more and disaggregated using a pestle and mortar.

Differing combinations of colorimetric, radionuclide and geochemical

properties were used in the four study catchments. Geochemistry and

radionuclides were used in the River Lyne catchment, radionuclide and

colorimetric tracers in Semer Water, geochemistry and colorimetric

tracers in Blockley Brook and geochemistry in Woodhill Brook.

To quantify colourimetric tracers, the samples were packed into

clear polyethene bags and images of them were captured using a Ricoh

MP colour scanner. The images were then imported into Gimp 2 photo

editing software and the values of reflected red, green and blue were

measured on a scale of 0–255 in the RGB colourspace (Pulley &

Rowntree, 2016). Radionuclide activities were quantified using Ortec

hyper-pure germanium detectors using the methods of Foster, Board-

man, and Keay-Bright (2007). A mean of 2.7 g of each sample was

packed into PTFE sample pots to a depth of 4 cm. Each sample was

measured for a minimum of 1 day and the total number of decay counts

for each radionuclide was quantified manually using Ortec Gamma

Vision software. The measured counts were corrected for detector effi-

ciency and the activities of (mBq g−1) of 137Cs, 228Ac, 40K, 234Th, 235U

and 212Pb were calculated. The concentrations of P, K, Ca, Mg, Na, S,

Fe, Al, Ti, Zn, Cu, Ni, Cd, Cr, Pb, Mo, Co and Mn were determined using

a Perkin Elmer Optima 7300 DV Inductively Coupled Plasma – Optical

Emission Spectrometer. Prior to analysis, samples (~0.25 g) were

digested using 5 ml of aqua regia. Every 10th sample was repeat

analysed to ensure consistency of results and that samples were ade-

quately homogenized during the sample preparation process.

3.3 | Classification of source groups and virtual
mixture creation

Five source group configurations were formed for each study catchment.

The first three were based upon a k-means cluster analysis (Pulley, Van

Der Waal, Collins, Foster, & Rowntree, 2017; Walling et al., 1993;

Walling & Woodward, 1995) containing two, three and four source

groups. Maps of these groupings within the study catchments are shown

in Figure S1. The two additional source groups were based upon land

use and geology, except for the River Lyne, where a uniform geology

meant that two different land use based classifications were used, and

Woodhill Brook, where limited discrimination between cultivated land

and grassland also resulted in the same source groups for geology and

land use. Each source sample was initially assigned the land use it

was retrieved from during the fieldwork (including channel banks (Lyne,

Semer, Woodhill), bed sediment (Woodhill) and land slips (Semer)) and

the geology which underlies it (Figure 1). An initial linear discriminant

analysis (LDA) was then used to determine which of these initial source

groups were likely to be discriminated successfully using the measured

tracers. Where source groups were unlikely to be discriminated

efficiently, they were combined into a single source group. These com-

bined source groups are shown in Figure 1 and were as follows:

Blockley land use: Grassland, woodland, cultivated.

Blockley geology: Marlstone and mudstone, sandstone, limestone.

Lyne land use 1: Cultivated and grassland, channel banks, woodland.

Lyne land use 2: Cultivated, grassland, channel banks, woodland.

Semer land use: Land slips, channel banks and topsoils, woodland

and peat.

Semer geology: Peat, non-peat sources.

Woodhill land use: Topsoils, bed sediment, channel banks.

Woodhill geology: Topsoils, bed sediment, channel banks.

For each source group classification, virtual mixtures were calcu-

lated to be a 100% contribution from each source and equal propor-

tions of all sources producing between 3 and 5 mixtures for each

classification. A mixture of a 100% contribution from each source was

the source group median value and the equal proportions were the

mean of all source group medians. As this method of forming the mix-

tures may bias the outcomes in favour of a distribution that is formed

around the median (25th–75th percentile range) rather than the mean

(TMV Normal, Normal), the models were also run using the means as

a 100% contribution from each sample (Figure S2).

The mixtures were initially calculated using data from 100% of

the retrieved source samples to reflect the most commonly applied

assumption used in source fingerprinting studies that the entire catch-

ment is releasing sediment during effective precipitation events. How-

ever, as argued above, this assumption does not reflect reality during

many rainfall-runoff events. Accordingly, nine additional sets of mix-

tures were calculated using a random 90, 80, 70, 60, 50, 40,

30, 20 and 10% subset of the source samples collected for each

source group in each study area. For most of the study catchments,

10% of the dataset equated to one sample per source group, although

this was also the case for 20 or 30% of the dataset in some source

groups. The formation of the virtual mixtures and their source appor-

tionment with the un-mixing model was repeated a total of 10 times

and the mean result was used to interpret model success.

3.4 | Un-mixing modelling for sediment source
apportionment

An updated version (v1.2) of the SIFT (SedIment Fingerprinting Tool)

sediment source fingerprinting software (Pulley & Collins, 2018a) was

used for this study; full details are provided in Pulley and Collins (2018b)

and a video supporting end-users can be found at: https://www.

youtube.com/watch?v=T8NopA9zgbs&t=84s. For the model runs for

each study catchment, three different composite fingerprints (Pulley &

Collins, 2018a, 2018b) were formed using a LDA. Each virtual mixture

was run through the un-mixing models with each fingerprint for the

10 sets of virtual mixtures generated. Prior to running the models, all

tracers were re-scaled by dividing by the maximum value in each source

group, to ensure the concentration data fell between 0 and 1.
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The composition of each of the mixtures was apportioned using

an un-mixing model based upon that developed by Collins et al.

(1997) but, critically, using the four different source group tracer dis-

tribution methods in a Monte Carlo uncertainty analysis. No correc-

tions for particle size and organic matter content were used as they

are not applicable when using virtual mixtures. For the TMV Normal

distribution, the tracer values for each source were log transformed

and a covariance matrix was formed and a multivariate normal distri-

bution table consisting of 2,000 random values was created from

it. This table was sampled for each of the 2,000 Monte Carlo itera-

tions (Batista et al., 2019). Where correlations between tracers were

present in the source dataset, they were maintained in the generated

distribution (Laceby & Olley, 2015).

The Normal distribution sampled the random numbers according

to a normal distribution formed using the mean and standard devia-

tion measured for each source group. There was no removal of poten-

tially outlying samples and correlations between tracers in the source

samples were not maintained in the generated numbers. The 25th–

75th percentile distributions used the 25th and 75th percentile values

of each tracer in each source group. Random values from this inter-

quartile range were sampled for each Monte Carlo iteration. These

random values did not follow any specified distribution within the

range (e.g. a normal distribution). Correlations between tracers in the

source groups were not maintained in the generated random num-

bers. The Sample Based distribution sampled ~5% of the Monte Carlo

iterations from the 0 to 5th percentile measured values of each tracer

for each source group, ~5% from the 5th–10th percentile, and so

forth (Pulley & Collins, 2018a). In this way, the Monte Carlo iterations

roughly followed the tracer distribution of the source material samples

retrieved for each individual source group. Where correlations were

present between tracers with an r2 greater than 0.85, the correlation

was also maintained during the random iterations.

3.5 | Assessment of un-mixing model performance

Both accuracy and precision of the un-mixing models using the four dis-

tributions were used to assess model success. Model accuracy was

quantified as the difference between the median un-mixing model out-

put and the actual composition of the virtual mixture on the 0–100%

contribution from each source scale. Model precision was quantified as

the range of uncertainty between the 25th–75th percentile un-mixing

model Monte Carlo outputs on the 0–100% contribution scale. It was

also determined if the mean model accuracy exceeded the mean model

precision for each of the four study catchments, to identify if the actual

model uncertainty was accurately represented in the un-mixing model

outputs. If this was the case, the model output probability density func-

tions were manually examined to determine if the virtual mixture com-

positions fell outside of the full uncertainty range provided by the

models. Finally, one unsuccessfully apportioned site and source group

classification was examined in detail. This was to determine how the

randomly generated Monte Carlo iterations compared to the retrieved

source samples and how the different distributions input into the model

result in its specific outputs. The data for additional sites was examined

in the same way (but are not presented herein) to ensure that the con-

clusions made were representative.

4 | RESULTS

4.1 | Source discrimination

For all source group classifications, apart from the Four-Cluster group-

ing in the River Lyne, source discrimination with the LDA was

extremely high, suggesting that the analysed tracers are able to dis-

criminate effectively between the generated source groups (Table 1).

TABLE 1 The percentage of source
material samples classified correctly into
their respective groups using the three
different composite fingerprints for the
five source group classifications

Fingerprint Two cluster Three cluster Four cluster Land use Geology

Blockley Brook

1 100 99.9 99.2 98.7 96.8

2 100 99.3 99.2 99.4 96.2

3 100 99.8 98.8 97.7 96.3

River Lyne

1 98.3 98.2 74.1 97.9 89.4

2 99.7 98.3 73.8 98.9 91.7

3 99.8 98.9 73.9 98.5 91.8

Semer Water

1 97.5 93.3 94.6 90.8 97.5

2 97.1 93.1 94.5 90.7 97.1

3 97.7 93.1 95.1 90.9 96.8

Woodhill Brook

1 100 99.9 99.8 100 99.9

2 100 100 99.8 99.9 100

3 100 100 99.7 100 100

PULLEY ET AL. 7



A Shapiro–Wilks test for normality was performed for each tracer

in each source group and the percentage of source groups that are

normally distributed are presented in Table 2. In the Blockley study

catchment, most tracers were normally distributed apart from in the

two-cluster classification. In the other catchments, closer to 50% of

tracers were normally distributed and for Semer Water, as few as 21%

were normally distributed in the two-cluster classification (Table 2).

4.2 | Virtual mixture apportionment results

In all models run, the 25th–75th percentile distribution produced out-

puts with greater accuracy and precision than the other distributions

(Figure 2). Average accuracy errors (i.e. inaccuracy) for all models run

were 8.7% for the 25th–75th percentile distribution, 16.9% for the

TMV Normal distribution, 16.3% for the Normal distribution and 11.5%

for the Sample Based distribution. Average model precision error was

expressed as the difference between the 25th and 75th percentile con-

tribution from each source generated by the Monte Carlo uncertainty

routine (Figure 3). The mean precision error of the 25th–75th percentile

distribution model was 8.5%, which was less than half that of the TMV

Normal distribution at 17.3% and Normal distribution at 20.8%, and

slightly lower than the Sample Based distribution at 9.3%.

Model inaccuracy increased as a smaller proportion of the source

samples were used to form the virtual mixtures. The increase was largest

when using the 25th–75th percentile distribution (Figure 2). However,

when using this distribution, in only 6 of the 20 source group classifica-

tions used, the maximum inaccuracy using 10% of the total source sam-

ple dataset was larger than the mean inaccuracy when using the normal

type distributions and the entire source sample dataset (Figure 4). The

25th–75th percentile distribution maximum inaccuracy was, however,

higher in 14 of the 20 source group classifications when compared to

the mean inaccuracy of the Sample Based distribution (Figure 4).

To identify if the actual mixture composition fell outside of

the range of uncertainty shown in un-mixing model outputs, the

mean model inaccuracies were compared to the mean model

precisions. Mean inaccuracies plus one standard deviation were

larger than the mean precision ranges plus one standard deviation

in 1 of the 5 source group classifications and 10 virtual mixture

sets for the Blockley Sample Based distribution and 1 of the

50 for the 25th–75th percentile distribution. For the 50 mixture

sets per site, the following number had a higher inaccuracy than

precision: Lyne Sample Based 2, Lyne 25th–75th 5; Semer Sam-

ple Based 0, 25th–75th 2; Woodhill Sample Based 9, 25th–75th

6 (Figures 2 and 3). In total, these results represent only 5% of

the 200 virtual mixture sets analysed for the 25th-75th percentile

distribution and 6% for the Sample Based distribution. A manual

examination of the model probability density functions is required

to determine model performance in the few instances when inac-

curacy exceeds precision.

4.3 | Do virtual mixture compositions fall outside
of the un-mixing model output range of uncertainty
using the 25th–75th percentile distributions

Having determined that the 25th–75th percentile result is likely to be

optimal in the four study catchments, it was assessed if mixtures com-

posed of only a small percentage of the total source sample dataset

could generate results where the actual composition of the mixtures

fell outside of the range of uncertainty presented in un-mixing model

outputs. The least accurate model results were selected for evaluation

where the average inaccuracy was larger than the average precision

range in Figures 2 and 3. These were Woodhill land use, Lyne two-

cluster, Lyne-three cluster and Woodhill three-cluster.

For the Lyne study catchment, two and three cluster Fingerprint

1 and Woodhill three cluster Fingerprint 3 (Figure 5a–c), the mixture

composition did fall outside of the range of uncertainty shown in the

un-mixing model outputs. For the Woodhill site (Figure 5d) the least

accurate model for land use estimated a 100% contribution from culti-

vated and grassland topsoils when the mixture was actually a 100%

contribution from channel banks. This was likely due to an outlying

TABLE 2 The percentage of source groups * tracers which were normally distributed

Blockley F1 F2 F3 Lyne F1 F2 F3

Two-cluster 40 41 64 Two-cluster 65 61 55

Three-cluster 74 81 66 Three-cluster 61 55 61

Four-cluster 75 79 83 Four-cluster 100 100 69

Land use 71 71 75 Land use 67 62 53

Geology 71a 71a 71a Geology 75 89 71

Semer F1 F2 F3 Woodhill F1 F2 F3

Two-cluster 21a 21a 19 Two-cluster 55 50 44

Three-cluster 46a 46a 46a Three-cluster 54 58 58

Four-cluster 53a 53a 53a Four-cluster 54 64 46

Land use 54a 54a 54a Land use 50a 50a 50

Geology 33a 33a 50 Geology 50 50a 50a

aFingerprints containing the same tracers as another in that source group classification.
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source sample being randomly selected to form the virtual mixture. In

this case, the uncertainty range generated by the model does cover

the actual virtual mixture composition. However, it is unlikely that an

end user would interpret this result as having high uncertainty and

would likely reach an incorrect conclusion that 100% of this sample

was composed of cultivated and grassland topsoils. A similar result

was found for the Blockley land use Fingerprint 2, when apportioning

a 100% contribution from cultivated topsoils, although uncertainty

ranges are wider in this case, suggesting that a user may treat this

result with more caution (Figure 5e). However, in the same model, the

result for a 100% woodland mixture produced an output where the

actual mixture composition is outside of the model uncertainty range

(Figure 5f).

4.4 | The generation of random numbers with the
Monte Carlo routine and their effect on un-mixing
model accuracy and precision

To determine why the accuracy and precision of the un-mixing

models using different tracer distributions differ, the Blockley Land

use Fingerprint 1 was examined in detail. It was determined how

the random values produced during the Monte Carlo routine com-

pared to the measured tracer values of the retrieved source material

samples. This fingerprint produced results where the cultivated and

woodland sources were not recognized by the un-mixing model

when only 10% of the source sample dataset was used. The com-

posite fingerprint consisted of Al, Ca, Fe, K, Mg, Ni, S and Ti;

F IGURE 2 Mean accuracy errors for each site plotted against the percentage of source samples used to form the corresponding virtual
mixtures for each study catchment
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however, the nature of the discrimination provided by Al, Fe, K, Mg,

Ni and Ti was very similar, so only the plot for Al is shown

(Figure 6). The mean and median concentrations for each source

group were generally similar and any differences between the two

averages were far smaller than the differences between the source

groups, meaning that the midpoints of the distributions are unlikely

to have a significant effect on un-model results (Figure 6). The stan-

dard deviation range was, however, in all cases larger than the

25–75th percentile range. This is particularly important, as only

68% of the generated Monte Carlo iterations would be expected to

fall within this range.

The scaled concentrations of these three key tracers generated

during the Monte Carlo uncertainty routine varied considerably with

the different distributions (Figures 7 and 8). The 25th–75th distribu-

tion values were clearly truncated when compared to the retrieved

source samples, whilst the TMV Normal distribution and Normal dis-

tribution produced a broad spread of values which occasionally fell

outside of the range of the source groups, especially when the

source groups did not follow a regular shape in the plot (e.g. a rect-

angle). It is of note that the TMV Normal distribution, by

maintaining correlations between tracers in the random numbers,

produces a distribution more comparable to the retrieved source

samples than the Normal distribution. However, the transformed

multivariate distribution did produce values which were distant out-

liers from the range found in the source samples such as for calcium

(Figure 8). This is likely a result of imperfect correlations between

elements being used to generate the values. As expected, the Sam-

ple Based distribution produces values more similar to the source

samples than its alternatives; however, a considerable number of

values are still produced which fall outside of the range found in the

source samples. When considering discrimination between catch-

ment sediment sources, the 25th–75th percentile distribution pro-

duced no overlap of values between groups and a smaller within-

source variability (Figures 7 and 8), explaining its more accurate and

precise results. However, there is clear scope for an individual

retrieved source sample to have tracer values falling outside of the

range generated by the Monte Carlo routine. This likely explains

why, when only 10% of source samples are used in a virtual mixture

model, inaccuracy can be larger than the precision range of the gen-

erated model outputs.

When combining the random values for all tracers in each compos-

ite fingerprint into LDA scores, there is a significant difference between

the discriminant function scores of the retrieved source samples and

those generated by the Monte Carlo routines (Figure 9). In contrast to

the individual tracers, the 25th–75th percentile distribution produces a

range of values most comparable to the collected source samples.

F IGURE 3 The mean model precision errors, on the 0–100% contribution scale, for all fingerprints and virtual mixtures for the five source
group classifications and four study catchments
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Alternatively, the normal type distributions and Sample Based distribu-

tion have a large proportion of iterations falling outside of the range of

the source samples. This is likely a result of the combination of random

numbers being generated creating values which are not viable in the

actual catchment and explains why model accuracy and precision are

considerably worse than when using the 25th–75th percentile distribu-

tion as un-mixing model input. Here, it is of note that the 25th–75th

distribution cuts out outlying samples such as the two grassland sam-

ples that overlap the cultivated group. The removal of such outliers

likely explains why in some cases the virtual mixture results fall outside

of the range of un-mixing model uncertainty. It is clear that a single

source sample that overlaps source groups can have a large effect on

the distributions produced with the normal type and Sample Based dis-

tributions. This effect is limited with the 25th–75th percentile distribu-

tion is used as un-mixing model input.

5 | DISCUSSION

Despite the rapid growth in the international uptake of sediment fin-

gerprinting procedures over the past 20 years (Collins et al., submit-

ted; Walling, 2013), it is noteworthy that some methodological

decisions have received far more scrutiny than others (Collins et al.,

2017). More specifically, with respect to un-mixing models, far more

attention has focussed on the choice between frequentist or Bayesian

frameworks (Davies et al., 2018; Habibi, Gholami, Fathabadi, & Jan-

sen, 2019) and on model structure (Collins, Walling, et al., 2010;

Haddadchi et al., 2014; Laceby & Olley, 2015) in conjunction with

decisions to include or avoid a variety of corrections or weightings for

various factors including particle size or organic matter selectivity

(Koiter, Owens, Petticrew, & Lobb, 2018; Smith & Blake, 2014),

within-source spatial variability in tracers (Collins, Zhang, Walling, &

Black, 2010; Martinez-Carreras et al., 2008), tracer discriminatory

weightings (Collins, Walling, et al., 2010; Wilkinson et al., 2013), tracer

analytical errors or precision (Collins et al., 1997; He & Owens, 1995)

or informative priors based on either strategic evidence on maximum

source contributions (Collins, Walling, et al., 2010 ) or slope-to-

channel connectivity (Upadhayay et al., 2020). Robust assessment of

the impact of different tracer distributions on the robustness of esti-

mated source proportions has not featured in existing international lit-

erature. This is somewhat surprising since the selection of tracer

distributions should be seen as a critical decision in the set-up of un-

mixing models. Some well-established frameworks adopted robust

estimators for the location (median) and scale (Qn, Sn) of tracer distri-

butions some years ago (Collins, Walling, et al., 2010; Collins, Zhang,

Walling, et al., 2010) to reduce sensitivity to the risks of bias associ-

ated with constructing conventional Normal distributions using the

mean and standard deviation and to avoid implicit reliance on the

F IGURE 4 The maximum model accuracy errors, on the 0–100% contribution scale, for the 25th–75th percentile distribution models, and
mean model inaccuracy for the Normal and Sample Based distributions
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assumption of data symmetry which remains an issue even with well-

known robust scale estimators such as the MAD (Rousseeuw & Croux,

1993). More in-depth consideration of different distributions for

tracers and their implications for un-mixing model accuracy and preci-

sion has hitherto been under-researched and the majority of studies

continue to use a conventional Normal distribution (e.g.Chen et al.,

2016; Chen, Fang, Wang, Tong, & Shi, 2017; Evrard et al., 2019;

Habibi et al., 2019; Huang et al., 2018; Smith et al., 2018).

For all model configurations at all study sites, the TMV Normal

and Normal distributions had both a lower accuracy and precision

than the alternatives. The 25th–75th percentile results consistently

provided the greatest accuracy and precision for source apportion-

ment estimates assessed using virtual mixtures, with the Sample

Based distribution, on average, being slightly more inaccurate and

imprecise. Here, however, it was observed that when examining the

probability density functions of the un-mixing model outputs, the

F IGURE 5 The most inaccurate un-mixing models when only 10% of available source material samples are used in the virtual mixtures with
the 25th–75th percentile distributions
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differences between the 25th–75th and Sample Based distributions

were often appreciable when making a visual comparison of the

model predictions using these different input tracer distributions.

The findings of this study reveal a clear advantage to using only

the 25th–75th percentile ranges of tracer values as input for un-

mixing models. Whilst in some models, the actual model inaccuracy

was greater than the precision range provided by the model results,

this was highly infrequent (<6% of models) and occurred primarily

when <20% of the source samples contributed sediment to the mix-

tures. Maximum inaccuracy most often remained lower than the mean

inaccuracies with the use of a TMV Normal distribution and Normal

distribution. Despite the generally reasonable performance of the

Sample Based distribution, it did not show any significant advantages

over the use of a 25th–75th percentile distribution and also could

produce inaccuracies larger than the corresponding precision range

for model outputs.

From the analysis of the numbers generated by the Monte Carlo

uncertainty routine used in conjunction with the un-mixing model, it

is apparent that using a truncated distribution, such as the 25th–75th

percentile, produces a combined set of random values for all tracers

most comparable to the source samples retrieved from the study

catchment in question. It may therefore be possible for an even more

truncated distribution to yield further improvements in accuracy

and precision. However, taking this principal to its furthest extreme

would result in a methodology comparable to the earliest sediment

fingerprinting studies where only individual tracer means are used to

represent source groups and, accordingly, there are no uncertainty

ranges generated for model results. Whilst this early method would

likely yield a high accuracy if 100% of the retrieved source samples

contributed sediment equally, if erosion and sediment delivery are

even slightly localized, as is often observed on the ground, the actual

sediment provenance would fall outside of the corresponding uncer-

tainty range. Therefore, whilst it will likely be possible to further

refine decisions as to the optimum tracer range to input into an un-

mixing model, to avoid producing artificially low uncertainties associ-

ated with un-mixing model results, this study suggests that the 25th–

75th percentile range may be a widely applicable range for achieving

high accuracy and precision, but, critically, without uncertainty ranges

being unrealistically constrained. Additional advantages to the use of

the 25th–75th percentile distribution are that outliers will have lim-

ited effect on the un-mixing model outputs and that fewer source

samples will likely be required to characterize this range than with

the normal type distributions and especially the Sample Based distri-

bution. This may result in a significant reduction in the resource

requirements for delivering a robust sediment source fingerprinting

study.

Palazón et al. (2015) identified using virtual mixtures that includ-

ing more tracers in a composite fingerprint produced more accurate

results. It is likely that this is a result of minimizing the effects of out-

liers randomly selected during the Monte Carlo routine as the findings

F IGURE 6 Median, 25th and 75th percentile and mean and standard deviation tracer concentrations in the Blockley Land use Fingerprint 1
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of our study herein suggest that a combination of randomly selected

tracers which are at the tail ends of the input normal distributions

could produce a combined set of random values that are not viable

when compared to the values found in the retrieved source samples.

For conventional approaches, it is therefore likely that a greater num-

ber of tracers used minimizes the effects of any individual outlying

tracer value selected by the un-mixing model.

Whilst this study performed a robust analysis of the accuracy

and precision of un-mixing model outputs using virtual mixture tests,

an important consideration is that this only represents the uncer-

tainty associated with un-mixing modelling within the sediment

source fingerprinting procedure. There are many additional sources

of uncertainty associated with source fingerprinting methodologies

including those associated with the selection and sampling of

F IGURE 7 Scaled aluminium and sulphur concentrations in the source samples and generated by the Monte Carlo iterations with the
Blockley Land use Fingerprint 1 using the different distributions as un-mixing model input
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potential sources, sample transportation and pre-treatment and lab-

oratory analyses of tracers. For example, Pulley (2014) calculated an

average coefficient of variation of 7.6% associated with the mea-

surement of radionuclide tracers which was in some cases larger

than the differences in tracer concentrations between source

groups. Collins et al. (2019) showed that temporal variability in

δ13C, δ15N, TC and TN soil properties could lead to close to 50%

errors in the apportionment of contributions from surface and sub-

surface sources from a single field. Whilst these large uncertainties

are site-specific, they illustrate that without a robust overall method-

ology the optimization of un-mixing models is unlikely to be suffi-

cient by itself to deliver accurate results. This is an emerging area of

research and more work is needed to explore and characterize these

uncertainties.

F IGURE 8 Scaled calcium and sulphur concentrations in the source samples and generated by the Monte Carlo iterations with the Blockley
Land use Fingerprint 1 using the different distributions as un-mixing model input
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F IGURE 9 The two largest discriminant functions of the 2,000 Random Monte Carlo iterations generated for the Blockley Land use
Fingerprint 1, using the four distributions and for the retrieved source samples
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Source sampling density is an additional source of uncertainty

associated with the tracer distributions input into an un-mixing model.

To accurately represent the tracer distributions within an un-mixing

model, the variability within sediment sources must be understood.

Small, Rowan, and Franks (2002) recommended 20 samples per

source; however, in small catchments such as those examined in this

study, fewer samples may be adequate. Further work is required to

determine how many samples are required to form the different distri-

butions which might be used in an un-mixing model. The uncertainty

associated with tracer measurement can potentially have a large

effect on model results if analytical error is high and discrimination is

poor (Collins & Walling, 2004). Collins, Walling, et al. (2010) and much

subsequent research has varied tracer concentrations of the target

sediments to random values using summary statistics on the sample

data to incorporate this uncertainty into results. Therefore, whilst

there are clearly advantages to using a truncated distribution, such as

the 25th–75th percentile, it is important to consider other sources of

uncertainty and incorporate their assessment into any methodology

explicitly. To not do so, risks underestimating the true uncertainty of a

source fingerprinting study. It also continues to be important to use

independent evidence to verify source apportionment estimates gen-

erated using the fingerprinting approach, since very few studies have

been able to do this and thereby rely on assessing un-mixing model

performance alone using virtual or artificial mixtures.

6 | CONCLUSIONS

The results of this study indicate that the use of a 25th–75th percen-

tile distribution in a Monte Carlo uncertainty routine can deliver a

significant improvement in both the accuracy and precision of un-

mixing model results, when evaluated using virtual mixtures. The

poor performance of the Normal distribution and TMV Normal distri-

bution is clearly of concern as large inaccuracies and a wide range of

uncertainty in model outputs can significantly reduce the robustness

of a sediment source fingerprinting exercise. However, it has been

shown in some studies that inaccuracies can be lower than found

here, with distributions based upon a mean and standard deviation

indicating it can potentially provide reliable results in some cases

(Haddadchi et al., 2015). The effective removal of outliers (Gorman-

Sanisaca, Gellis, & Lorenz, 2017) and use of similar distributions

which may output a more truncated range of tracer values may also

serve to significantly improve un-mixing model results when evalu-

ated using mixture tests. On the basis of our findings reported here,

it is recommended that users of sediment source fingerprinting pro-

cedures trial the use of the 25th–75th percentile distribution along-

side alternatives as significant improvements in un-mixing model

performance may be possible. Many current Bayesian approaches

utilize a normal type distribution, or a similar alternative, based upon

a mean and standard deviation. Therefore, it should be evaluated

if the advantages of the Bayesian approach are enough to justify

any potential loss in model accuracy or precision due to the use

of a potentially sub-optimal representation of catchment sediment

sources within the model. The use of virtual sample mixtures with

different un-mixing model data input structures provides an impor-

tant methodological step with which to make this assessment. The

additional methodological step used here to assess the impact of sed-

iment mobilization and delivery from only a small proportion of the

catchment in question can clearly also provide valuable information

for a sediment source tracing study. Specifically, the results pres-

ented herein indicate that unless sediment delivery was highly local-

ized comprising <20% of the retrieved source samples, overall un-

mixing model accuracy was not significantly higher than when sedi-

ment is assumed to be contributed uniformly from the entire sampled

catchment. Clearly, the result of this proposed methodological step

will reflect several factors including the scale of the study area in

question and the concomitant spatio-temporal variability in rainfall

coverage and complexity of slope-to-channel connectivity pathways.
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