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The growth and development of plant pathogens and their hosts generally respond strongly to the temperature of
their environment. However, most studies of plant pathology record pathogen/host measurements against physical time
(e.g. hours or days) rather than thermal time (e.g. degree-days or degree-hours). This confounds the comparison of
epidemiological measurements across experiments and limits the value of the scientific literature.
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Introduction

 

In 1735 Réaumur suggested that the biological develop-
ment of an organism proceeds only when a certain number
of ‘heat units’ have been accumulated. The general veracity
of that observation has been demonstrated for many biolog-
ical processes in the intervening years. For example, it has
been used to determine rates of colonization, growth and
maturation for many insect species and microorganisms.
Researchers in entomology and plant physiology usually
measure growth and development against thermal time,
which is an accumulation of heat units above some thresh-
old (base) temperature over a specified period of time,
usually 24 h. Réaumur (1735) first put forward the idea
of a base temperature, and Bonhomme (2000) reviewed
the use of degree-days in particular, including their applica-
tion to plant development.

Thermal time is known to be important in assessment
and modelling of growth and development of many plant
pathogens, for example 

 

Mycosphaerella graminicola

 

,
anamorph 

 

Septoria tritici

 

 (leaf blotch) and 

 

Gaeumanno-
myces graminis

 

 (take-all) in wheat (Brasset & Gilligan,
1989; Schoeny & Lucas, 1999; Lovell 

 

et al

 

., 2004);

 

Verticillium dahliae

 

 (verticillium wilt) in potato (Mol 

 

et al

 

.,
1996); and 

 

Xanthomonas campestris

 

 pv. 

 

dieffenbachiae

 

(bacterial blight) in anthurium (Fukui 

 

et al

 

., 1999). Models,
which may incorporate quite complex functions of
temperature, can be used successfully to predict the

onset and extent of disease, for example in the cases of

 

Podosphaera leucotricha

 

 (powdery mildew) in apple shoots
(Xu, 1999a); 

 

Puccinia graminis

 

 ssp. 

 

graminicola

 

 (stem rust)
in perennial ryegrass (Pfender, 2003); and 

 

Sclerotinia
sclerotiorium

 

 in lettuce (Clarkson 

 

et al

 

., 2004).
In the field of horticulture, Wurr 

 

et al

 

. (2002) provide a
review that considers the importance and applicability of
thermal time to crop scheduling and prediction of crop
maturity in particular, an area of research where the
concept appears to be generally acknowledged and used
where appropriate. Most studies of plant pathology,
however, use physical time scales (hours or days), even
when there is evidence to suggest that thermal time may
be a more appropriate measure. It is not immediately clear
why plant pathologists have failed to embrace the concept
of thermal time as a standard scale. For most investiga-
tions, whether field- or laboratory-based, the collection of
appropriate temperature data is a relatively trivial task,
which suggests that it is either deliberately not collected,
or is unused during data analysis. Certainly, it is implausible
that plant pathologists are unfamiliar with the concept of
thermal time. Lack of uptake could therefore be caused
by the absence of standard frameworks to analyse the
sometimes complex nature of the temperature–organism
relationship, and this might explain why there is a tendency
for greater use and application of thermal time in studies
that involve both mathematical modellers and plant
pathologists.

This letter seeks to demonstrate and discuss the benefits
for plant pathology of measuring growth and develop-
ment against thermal time. These benefits are considered
in relation to individual studies, and also more widely, in
terms of how they might increase the value of observations
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reported in scientific literature by facilitating more mean-
ingful comparisons of epidemiological measurements
across studies.

 

Variation in temperature over time

 

Good scientific practice demands that experimental designs
should provide a means of controlling, or accounting
for, the environmental variables likely to affect the system.
This is especially important when an experiment is repli-
cated across more than one occasion. For pathosystems,
the prevailing environment can influence both the defence
put up by the plant and the attack made by the pathogen.
This is exemplified by the role of temperature (affecting
phyllochron, infection and latent period) and rainsplash
(affecting spore dispersal) shown for 

 

S. tritici

 

 in wheat
(Lovell 

 

et al

 

., 1997, 2004). If temperature is known or
expected to influence the development and growth of a
particular system, it is logical, in the simplest case, to pro-
vide an estimate of the base temperature (below which
growth in the system ceases and hence at which accumu-
lation of thermal time should stop), and to use the linear
thermal time scale that is derived as a basis for measure-
ments. Otherwise, epidemiological parameters (e.g. rates
of development) and measurements (e.g. area under the
disease-progress curve, AUDPC) expressed in terms of
physical time are likely to be grossly misleading. This
problem will be especially acute when comparisons are
made across experiments that have experienced variable
temperatures typical, for example, of field conditions.

To demonstrate this point further, 25 years of mean
daily temperature data (1975–99), collected at Long
Ashton Research Station (LARS), Bristol, UK, were exam-
ined. The running 7-day maximum, minimum and mean
thermal time accumulations over years, taking a base
temperature of 0

 

°

 

C, are shown in Fig. 1. As a result of
seasonal variation, thermal time accumulation is not
consistent over a 12 month period. Therefore the longer
an experiment runs, the worse the estimation of rates
of development in terms of time will be for a system

responding to temperature. This can be demonstrated by
considering a simple example. Suppose that a measure of
disease severity, 

 

y

 

, expressed as a percentage, is depend-
ent on thermal time, 

 

T

 

, and follows a logistic pattern of
increase with an exponential rate of 0·03 and an initial
infection level (at 

 

T

 

 = 0) of 1%, so that

 

y

 

 = 100/(1 + 99

 

e

 

−

 

0.03T

 

) (1)

For LARS, the mean rate of change in weekly accumula-
tion of thermal time, for a period across the summer
months, can be estimated assuming a linear trend (Fig. 2).
For the period of 100 days from 1 April (the main period
of rapid growth and yield formation of many UK crops),
this equates to approximately 0·7 thermal time units per
day. Using this rate of temperature accumulation in asso-
ciation with Eqn 1 for the disease, and selecting three pos-
sible starting points for the same experiment as day 0 (1
April), day 35 and day 70 (Table 1), three separate logistic
patterns of disease increase in terms of days can be
seen (Fig. 3a). For this expression of disease progress,
the exponential rate of growth increases with delay in
the start of the experiment. Similarly, modelling the data
transformed as 

 

r

 

 = log[

 

y

 

/(100 

 

−

 

 

 

y

 

)], as for a polycyclic
disease (Vanderplank, 1963), and using a daily scale, sep-
arate rates of increase are estimated as 0·26, 0·35 and 0·44
for the three starting dates of 0, 35 and 70, respectively
(Fig. 3b). If, however, calculations are made on the ther-
mal time scale, the rate of increase in 

 

r

 

 is identical (0·013),
regardless of starting date. This simulated example is
analogous to, and supported by, data from Lovell 

 

et al

 

.
(2004), who accounted for seasonal and annual variation
in temperatures to estimate the latent period of 

 

S. tritici

 

from measurements taken in a long-term outdoor study.
On the thermal time scale the rates of increase in disease
expression at different times of the year were seen to be
much the same, whereas on a daily scale the rates were
clearly dependent on the time of year, thus making estima-
tion of a latent period impractical on that scale.

Figure 1 Mean running 7-day thermal time accumulation (Acc-TT; base 
temperature = 0°C) for Long Ashton Research Station (LARS), UK 
1976–99. Solid line, mean values; dashed lines, variation between 
years (maximum and minimum values for the 25-year period).

Figure 2 Mean running 7-day thermal time accumulations (Acc-TT) 
over 25 years for two locations: LARS, UK and Kentland, IN, USA. Mean 
rate of change in accumulation over a 100-day period from 1 April was 
approximately 1·2 units per day at Kentland (dashed line), compared 
with 0·7 at LARS (solid line).
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For polycyclic pathogens, observations of epidemic
development are often made over long durations. Hence,
where temperature is generally increasing over the crop-
ping season, disease progress will tend to appear exponen-
tial if viewed on physical time scales. When considered on
a thermal time scale, however, these progress curves often
assume a linear or even logistic trend. An example of
this is shown in Fig. 4 for the cumulative progress of
an epidemic of leaf blotch on barley, caused by 

 

Rhynchos-
porium secalis

 

 (reproduced from Davies, 1990). This
example also shows the effect of seasonal variation in
temperature through the comparison of epidemics on
autumn- and spring-sown crops. When viewed in physical
time (Fig. 4a), the early rate of epidemic development for
the spring-sown crop appears more rapid than that of the
autumn sowing. However, when considered against ther-
mal time (Fig. 4b), there is very little difference between
the two epidemics.

 

Variation in rate of temperature accumulation 
between locations

 

Comparing the temperature data for LARS with similar
data from a meteorological station in Kentland, IN, USA
shows that the influence of annual variations in tempera-
ture are not consistent across geographically distinct loca-
tions (Fig. 2). For example, the rate of change in thermal
time accumulation over the 100-day period from 1 April
at Indiana was approximately 1·2 units per day, compared
with 0·7 for LARS. This demonstrates how local climate
determines the relevant importance of using thermal time
for a given site. Where there is a more rapidly changing
seasonality in temperature, or where annual variation
across years is greater, the extent of misinterpretation of
biological processes with respect to days is likely to be
greater.

The importance of accounting for geographic variation
in temperature was demonstrated by Parker & Lovell
(2001). Comparing the results of two experiments, they

Table 1 Simulated data set to compare disease progress in terms of time (days) and thermal time (degree-days) 

Time 
(days)

Weekly thermal 
time (degree-days)

Accumulated 
thermal time

Time 
(days)

Disease 
expression 
(%)

Time 
(days)

Disease 
expression 
(%)

Time 
(days)

Disease 
expression 
(%)

0 0 0 0 0
7 50·00 50·00 7 20
14 54·82 104·82 14 41·92
21 59·65 164·47 21 65·79
28 64·47 228·94 28 91·58 0 0
35 69·29 298·23 7 27·72
42 74·12 372·35 14 57·36
49 78·94 451·28 21 88·94
56 83·76 535·04
63 88·58 623·63
70 93·41 717·04
77 98·23 815·27 0 0
84 103·05 918·32 7 41·22
91 107·88 1026·19 14 84·37

Figure 3 (a) Simulated disease-progress curves for an epidemic, 
where growth rate is fixed with respect to thermal time accumulation 
starting on three dates (1 April, 6 May and 10 June) and where the 
thermal time data used are the mean running 7-day values for LARS 
(1975–99). (b) Simulations as in (a) but with data transformed as 
r = log[y/(100 − y)] as for a polycyclic disease (Vanderplank, 1963) and 
using a daily scale from epidemic onset. Separate rates of increase are 
estimated as 0·26, 0·35 and 0·44 for epidemics starting on 1 April, 6 
May and 10 June, respectively.
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found that spore production of 

 

S. tritici

 

 was very similar
for crops sown on the same date in two geographic
regions within the UK (LARS, south-west and High
Mowthorpe, north-east). This similarity was made
evident only by measuring progress according to the
accumulation of thermal time, for which there was a large
difference between the sites. Extending this study to con-
sider crops sown at the same locations but with different
sowing dates showed that a considerable proportion
of the differences in spore production observed between
crops could also be attributed to accumulated thermal
time (D.J.L. and S.R.P., unpublished). These observations
add credence to empirical correlations reported between
winter temperatures and summer observations of

 

S. tritici

 

 epidemics (Gladders 

 

et al

 

., 2001; Pietravalle

 

et al

 

., 2003).
Further relevance of thermal time in the context of

comparing locations is provided when considering the
effects that locally adapted populations or known different
genetic strains of pathogens may have. These effects may
include differences in the rate of development in response
to temperature or variation in the base temperature.

 

Statistical analysis

 

Modelling data from experiments that consider pathogen
response to temperature allows the form (linear, piecewise
linear or nonlinear) of the rate of disease development to

be defined in terms of this environmental variable. The
form can be investigated most easily by modelling data
from experimentation across a range of constant tempera-
tures, but the relationship obtained in this case may not be
the same as that in the situation of fluctuating temperature
in the field. However, when modelling data from the field,
an underlying assumption about the form of the response
to temperature is required and the modelling allows
this assumption to be tested only in terms of the range
of temperatures experienced. Together, both methods of
experimentation can successfully define the form of the
pathogen response to temperature, and proposed models
can then be validated by collecting data under different
sets of temperature conditions to verify model predictions
of thermal times to events.

When the rate of development in the system is assumed
to be linear with increasing temperature, a base temperature
should be chosen that provides the minimum coefficient
of variation of the temperature accumulations (Arnold,
1959); however, base temperatures are often fixed at 0

 

°

 

C
without justification. Where a base temperature other
than 0

 

°

 

C is used, it is often derived from previous studies
that estimated the lower limit for biological activities such
as infection or sporulation (Tyldesley, 1978). For example,
Scherm 

 

et al

 

. (2001) used 7·2

 

°

 

C as a base temperature in
a study of germination of pseudosclerotia of 

 

Monilinia
vaccinii-corymbosi

 

 (mummy berry disease) in blueberry,
citing Milholland (1977).

Figure 4 Progress of epidemics of leaf blotch, Rhynchosporium secalis, on barley for winter- (�) and spring-sown (�) crops, plotted with respect 
to (a) physical time (days) and (b) physiological time (degree-days). Data reproduced from Davies (1990).
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Where the base temperature is unknown, it can be
estimated as the intercept of the regression of develop-
ment rate (inverse of time to reach an ontogenetic phase)
against average daily temperature (Olivier & Annandale,
1998; Baker & Reddy, 2001). However, a more thorough
derivation of base temperature may be provided by mod-
elling continuously recorded temperature and experimen-
tal data together. This second approach has been used, for
example, in studies of plant growth (Aikman & Scaife,
1993), seed germination (Grundy 

 

et al

 

., 2000), cell prolif-
eration (Powers 

 

et al

 

., 2003) and pathogen development
(Lovell 

 

et al

 

., 2004). In the last of these cases, the benefit
of estimating rather than assuming a base temperature
was made evident by comparing disease-progress curves
for different times of the year using a base temperature
fixed at 0

 

°

 

C with those using an estimated value of 

 

−

 

2·37

 

°

 

C.
With the estimated base temperature, the fit of the model
used was better and the differences between batches of
plants (representing seasonal differences over 2 years)
were visibly reduced, thus more closely defining and con-
firming the temperature-driven nature of the disease.

Assumption of a linear response to temperature may
often be inappropriate. As an alternative, a piecewise lin-
ear (Tyldesley, 1978), logistic or skewed bell-shaped curve
could be more appropriate (Sharpe & DeMichele, 1977).
For example, the responses of cassava and maize crop
growth to temperature were best described using a
skewed probability density (beta) function (Yin 

 

et al

 

.,
1995). Observations of a nonlinear response to tempera-
ture, however, are often insufficiently detailed to allow
estimation of all the parameters of putative nonlinear
models. For example, if there are very few observations of
temperature at the extremes of the potential range during
the experimental period, it is unlikely that base, maximum
and optimum temperatures for a proposed bell-shaped
curve will be estimable. In such cases the linear approxi-
mation will be a reasonable alternative if, at least, a base
temperature can be estimated (or imposed from existing
knowledge), and if it is justifiable to assume the system has
not experienced temperatures beyond the point where the
optimum has been reached.

 

Sampling period

 

Observation of temperature

 

In its simplest form, and often in the absence of recorded
temperature on a more frequent scale, accumulated ther-
mal time is the sum of degree-days where each day is
calculated as the average of the daily maximum and
minimum temperatures adjusted for the base temperature
when it is exceeded:

[(maxtemp + mintemp)/2] 

 

−

 

 basetemp (2)

While this method of calculation provides a good approxi-
mation, it may be unsuitable in some circumstances, for
example where temperatures exceed the optimum temper-
ature during part of the day, as mentioned above, or where

a nonsymmetrical diurnal variation exists. Improvements
to this method of calculation therefore use information on
day length to adjust for the lack of symmetry of the diur-
nal cycle, for example Parton & Logan (1981) or Reader
& Phelps (1991) who, in the context of the HEATUNITS
directive in the 

 

genstat

 

 statistical package (GenStat,
2003), incorporate the methods of Reicosky 

 

et al

 

. (1989)
to calculate units of development with respect to the pro-
posed form of diurnal variation in temperature, given the
consecutive daily maximum and minimum and the global
latitude at which measurement is taken. Although such
models can increase the accuracy of the thermal time cal-
culation in the case where only maximum and minimum
temperatures are available, improvement can be achieved
simply by using frequent temperature measurements
throughout each day, allowing calculation at the scale of
degree-hours or degree-minutes. Generally, for models
that include estimation of a base temperature, the use of
concurrent hourly temperature data is preferable to using
mean daily temperatures calculated from the hourly data
prior to modelling. However, the frequency of tempera-
ture measurement, and hence the period of integration,
need to be determined on a system-specific basis by con-
sidering the extent and rate of temperature fluctuation
and the rate of change/development of the biological pro-
cess under examination. Also, one would expect the fre-
quency of measurement required to be less for controlled
environments than in the field, where solar radiation, pho-
toperiod, wind and evaporation are additional effects on
temperature as well as on development 

 

per se

 

. When mod-
elling tree cell proliferation using data from hybrid aspen
trees (

 

Populus tremula

 

 

 

×

 

 

 

Populus tremuloides

 

) experienc-
ing the fluctuating temperatures of a glasshouse without
supplementary heating and lighting, Powers 

 

et al

 

. (2003)
used temperature recorded every 3 min to estimate base
temperatures and corresponding rates of cell production.
They subsequently found that observation every 15 min
provided a fit of the model with no less precision, but that
taking observations more than 30 min apart led to a fit of
poorer quality. In contrast, when modelling crop develop-
ment, Purcell (2003) compared daily and hourly tem-
peratures and found only a small loss in precision in
estimating time to accumulation of 200 degree-days,
except when average temperatures were above 34

 

°

 

C or
close to the base temperature. When temperature is fluc-
tuating, as in the case of field experiments, the need for
frequent observations is likely to be greatest when systems
are examined at the micro (cellular) level, rather than at
the macro (ontogenetic) level. Despite this, the rate of
change of temperature with time is also important, as
there would be little advantage in moving from, for exam-
ple, 10- to 5-min intervals between observations if tem-
perature were already seen not to change perceptibly in
the space of 10-min intervals.

Where conditioning or environmental variables second-
ary to temperature, but nevertheless vital to pathogen
development, need to be considered – such as leaf wetness
(Pfender, 2003) or humidity (Rowe & Powelson, 1973) –
the measurement of environmental variables needs to be
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very frequent, otherwise important changes in the envir-
onment will be poorly detected or missed altogether.

 

Observation of the system (epidemic)

 

In order to design an appropriate sampling scheme for
an epidemic, the rate of change of the epidemic needs to
be considered (as mentioned above). For systems that are
highly influenced by temperature, the expected or pro-
posed base temperature and rate of system response to
temperature should determine the start and frequency of
system observation. Although there may be constraints
imposed by experimental, economic and analytical
requirements, the frequency of observations should, as far
as possible, be directly related to thermal time accumula-
tion rather than physical time. For example, if it is known
from previous studies how many degree-days need to be
accumulated from infection until lesion appearance, then
observations should be made frequently around the ther-
mal time at which first lesion appearance is expected, and
then at regular degree-day intervals thereafter to chart dis-
ease progression. In order to fit curves to epidemic data,
the sampling interval should be small enough, and the
sample size large enough, to ensure sufficient observations
for curve fitting. Sampling frequency can be planned with
respect to the long-term mean temperature pattern at a
site, then modified to take account of actual weather
conditions during the experiment. Although short-term
fluctuations from the mean should be accommodated,
these are usually smaller than the longer-term changes
that become important when an epidemic is observed over
a long period. For example, 

 

S. tritici

 

 on wheat may be
observed on several leaf layers during the spring in south-
ern England, where a 200 degree-day latent period (with
base temperature 

 

−

 

2·4

 

°

 

C) typically represents 19–33 days
in early spring (March/April) but only 14–22 days in late
spring (May). Use of an appropriate sampling scheme can
improve estimation of the thermal time latent period, rate
of epidemic progress or level of maximum disease expres-
sion. This can be quantified, for a simple case, with a sim-
ulation experiment using the standard logistic curve for
disease progression. For a single leaf, the probability 

 

p

 

 of
visible lesions at thermal time 

 

T

 

 after infection can be
written as:

 

p

 

(

 

T

 

) = 1/{1 + 

 

b

 

 exp[

 

−

 

r

 

(

 

T

 

 

 

−

 

 

 

l

 

)]} (3)

where 

 

l

 

 is the latent period (thermal time until appearance
of first lesions), 

 

r

 

 is the apparent infection rate and 1/
(1 + b) represents the probability of visible lesions at T = l.
To create epidemic progress similar to that typically seen
for S. tritici, the values used were: l = 200, r = 0·05 and
b = 99, with base temperature −2·4°C. Taking tempera-
ture data from Rothamsted in spring 2000, the binomial
distribution was used with p(T ) to simulate data for the
percentage of leaves observed with visible lesions over
thermal time, for infection on 1 March or 1 May with
sample sizes of 20 or 50 leaves. Samples were assumed to
be taken 200 degree-days after infection, and then at
intervals of 7, 5 or 3 days, or 75, 50 or 30 degree-days;
500 simulations were performed for each combination to
calculate the estimated infection rate.

The mean temperature during the period 200–400
degree-days after infection was 6·1°C for infection on 1
March and 11·6°C for infection on 1 May. A sample interval
of 75 degree-days was therefore equivalent, on aver-
age, to 8·8 days in March and 5·4 days in May; 50 degree-
days was equivalent to 5·9 days in March and 3·6 days in
May; and 30 degree-days was equivalent to 3·5 days in
March and 2·1 days in May. The mean estimated infection
rate (r) and its standard deviation are shown in Table 2. The
standard deviation indicates variability in the estimated
rate across data sets. In all cases the standard deviation of
the estimated infection rate decreased as sample frequency
increased, and as sample size increased. For sample intervals
based on days, the standard deviation was larger when
infection took place in May, as fewer samples were taken
during the epidemic. Substantial bias in the estimated rate
was also present for 7-day samples during May. For sam-
ple intervals based on degree-days, there was no difference
in the mean or standard deviation of the estimated rates
between March and May, but there was bias in the 75
degree-day estimate at both sample sizes, and in the 50
degree-day estimate for a sample size of 20. Therefore, to
determine the estimated infection rate to within ±0·02,
sample intervals of 50 degree-days would be required for
sample size 50, and intervals of 30 degree-days for sample
size 20 for epidemics at any stage in the growing season.

Discussion

Thermal time calculations are well established as a basic
scale for modelling the development of numerous biological

Table 2 Mean value (and standard deviation) of estimated infection rate (r = 0·05) from a simulation experiment for different times of infection, sample 
sizes and sample frequencies; 500 simulations were run for each case
 

Infection 
date

Sample 
size

Sample frequency

Days between samples Degree-days between samples

7 5 3 75 50 30

1 Mar 20 0·058 (0·032) 0·056 (0·024) 0·052 (0·008) 0·101 (0·079) 0·059 (0·038) 0·053 (0·009)
1 May 20 0·133 (0·066) 0·106 (0·086) 0·054 (0·019) 0·102 (0·080) 0·064 (0·051) 0·053 (0·010)
1 Mar 50 0·052 (0·007) 0·052 (0·007) 0·051 (0·005) 0·063 (0·043) 0·052 (0·007) 0·051 (0·006)
1 May 50 0·102 (0·067) 0·065 (0·048) 0·052 (0·007) 0·066 (0·048) 0·052 (0·007) 0·051 (0·005)
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systems. For several plant pathogens, various ontogenetic
phases have been reported to be dependent on thermal time
accumulation, for example ascospore maturation and
release (Spotts & Cervantes, 1994; Toscano-Underwood
et al., 2003); germination (Milholland, 1977); latent period
(Fukui et al., 1999; Lovell et al., 2004); and sporulation
(Rowe & Powelson, 1973; Teng & Close, 1978).

Thermal time is usually calculated using air tempera-
ture. While air temperature may be appropriate to many
studies of systems such as plant growth and plant patho-
gens, soil temperature may be more suitable for studies
of soilborne and root-infecting pathogens. Lovell et al.
(2004) suggested that the observation of a base air tem-
perature below 0°C for the latent period of S. tritici might
be the result of differences between recorded air tempera-
tures and the actual temperatures that the pathogen was
exposed to within the host. If it is practically feasible to
measure, plant internal temperature may prove more
applicable to the modelling of the system under study, as
it excludes the effects of the insulating properties of, for
example, the epidermis of leaves or bark. Variation in
development of ontogenetic phases may well be observed
if there are temperature differentials within the host. For
example, upper canopy leaves that are subject to high lev-
els of direct radiation may be warmer than lower canopy
leaves that receive diffuse radiation. Therefore due consid-
eration should be given to any possible variations between
the actual temperature measured and that in which the
pathogen resides.

Not all processes are suited for modelling by thermal
time. Blunt et al. (1992) found no advantage of using ther-
mal time, as opposed to time from sowing date, when
investigating Polymyxa betae, the plasmodiophorid vec-
tor of Beet necrotic yellow vein virus. Similarly, when
looking at the effect of fluctuating temperatures on
Bremia lactucae (downy mildew) in lettuce, Scherm &
Vanbruggen (1994) concluded that variability in the pre-
diction of latent period was greater when measured in
thermal time (degree-hours) than when measured in time
(days). Ontogenetic phases of pathogen development
may also differ in their responses to temperature, so model-
ling using thermal time must reflect this. For example,
Xu (1999b) found that when the latent period for
Podosphaera (= Sphaerotheca) pannosa (powdery mildew)
in roses was divided into two stages, incubation period
and postincubation period, the rate of fungal develop-
ment had a nonlinear relationship with temperature for
incubation, but a linear relationship postincubation.

In general, it appears that insufficient consideration is
given to the possible effects of thermal time in epidemio-
logical research. As a consequence, comparisons across
experiments are often confounded when experimental
sites differ in their temperature profiles and when epi-
demic processes are measured in terms of days rather than
thermal time.

Comparative epidemiology and modelling require that
dimensionality and both descriptive and measurement
terms are common across studies (Butt & Royle, 1978).
While much attention is given to describing temporal

terms such as germination, infection and latent periods,
the concept of time itself is generally not discussed. The
use of inappropriate time scales may result in comparisons
between studies being ineffectual (Figs 3 and 4). Where
the response of a biological process to temperature is lin-
ear, comparisons between independent studies using a
thermal time scale are effective, provided that significant
periods above or below the prospective upper and lower
threshold temperatures do not occur. However, where
temperatures vary significantly, or where the relationship
is nonlinear, effective comparisons may be possible only
by remodelling the data collectively. An immediate benefit
from wider adoption of thermal time scales in plant
pathology might be to improve the resolution of data-
mining methodologies (Pietravalle et al., 2003) that aim
to identify important time points and controlling vari-
ables for epidemic development. A more far-reaching
benefit will be to support the aspiration of integrative
bioscience, which will deliver verifiable predictions of the
behaviour of complex systems (Crute, 2003).
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