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a b s t r a c t 

Efficient farm management can be aided by the identification of zones in the landscape. 

These zones can be informed from different measured variables by ensuring a sense of spa- 

tial coherence. Forming spatially coherent zones is an established method in the literature, 

but has been found to perform poorly when data are sparse. In this paper, we describe 

the different types of data sparsity and investigate how this impacts the performance of 

established methods. We introduce a set of methodological advances that address these 

shortcomings to provide a method for forming spatially coherent zones under data spar- 

sity. 

© 2019 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

It is a well-recognised aim of many on-farm management strategies to divide fields into zones to ensure efficient and 

effective management where each zone may be treated differently. Defining such zones has been a topic of research for 

at least 40 years (see e.g. [1] ). The process of defining zones depends upon both the variables used to inform the zones, 

but also the approach used to ensure the zones are spatially coherent. It is of limited practical use to farm management if 

resulting zones are small and disjointed [2] . 

Data used to inform zones most commonly include yield data or soil characteristics which can be measured either di- 

rectly or more recently via remote sensing [3–6] . 

Once data are gathered and processed appropriately, methods for forming spatially coherent zones generally consist of 

two steps; clustering and smoothing. However, the literature varies in both the order that these steps are taken and the spe- 

cific clustering and smoothing methods used. For instance, [7] and [8] induced spatial smoothing through a modified dissim- 

ilarity/similarity matrix based on the variogram/covariance between points that was then used in the subsequent clustering. 

In comparison, [9] first classified the data through fuzzy c-means clustering and then smoothed the resulting clusters. This 

method was shown to outperform [7] and [8] in [2] . There are also implementations where data are first smoothed (e.g. 

through kriging) and are then classified [3,4,6] . Despite the lack of consensus both in the choice of smoothing method and 

also in how the smoothing is implemented, there has been a (somewhat) linear evolution in the approach to classifica- 

tion. Specifically, early work used hierarchical clustering methods [1] , however, since soil is not intrinsically hierarchically 
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structured [2] , and the advancement of computational power, non-hierarchical methods such as k-means became feasible 

[7,8] . Furthermore, since the late 1990s, non-hierarchical “fuzzy” clustering approaches have been prevalent in the literature 

[2,3,5,6,9] . Fuzzy c-means was first developed by [10] and assigns each point to a cluster with a specified probability. This 

then allows one to see which points are well distinguished and which are “fuzzy”. 

In this work, we return to the approach of [9] and [2] , but look to address the specific issues associated with data 

sparsity. Data sparsity can impact a dataset in different ways, through variable sparsity, spatial sparsity or colocation sparsity . 

Variable sparsity refers to a lack of information in the set of measured variables. Yield data often exhibit a high level 

of variability across time and space. Thus, to be able to definitively identify distinct clusters, several years worth of data 

need to be collected in order to look for consistently high or consistently low yielding areas. However, if the yield data are 

variable sparse and contain too little information, i.e. that the signal is too weak compared to the variability, clusters will 

be difficult to identify and distinguish regardless of how many years’ data are available. 

Spatial sparsity occurs when data are not collected uniformly across a field, this is the case for many infield measure- 

ments. Such spatial sparsity generates holes in the coverage of data over a field and as demonstrated in Section 3 of this 

paper, can either result in a large loss of resolution in the resulting field zones or in some cases, a failure in the convergence 

of the smoothing algorithms. 

Measuring multiple variables across the field will rarely result in the same field locations being measured at each time, 

which will result in, what we term, colocation data sparsity. Current zoning methods require each location to have a com- 

plete set of observations. Thus, colocation sparsity can result in a large loss of data, since any location for which only a 

subset of measurements were observed are omitted from the analysis, compounding the issue of spatial sparsity. Previous 

applications went some way to address this problem by aligning data to a common grid, however, complete coverage of all 

variables is rare without a prohibitive level of aggregation. 

In this paper we will provide guidance on the formation of spatially coherent zones under data sparsity as summarised in 

Fig. 1 . Specifically, we discuss the issues each type of sparsity creates and describe solutions to these. These methodological 

advancements are demonstrated through an extensive empirical study of real data collected from multiple fields at different 

temporal and spatial resolutions. We finish with recommendations of how to form spatially coherent zones under data 

sparsity and discuss at what point data can be considered too sparse. 

2. Materials and methods 

In the following we describe the three steps taken in [9] ; data pre-processing, clustering and smoothing and extend these 

to account for the issues created by data sparsity. 

2.1. Data pre-processing 

Each variable is first standardised to have unit variance. Since measurements from different variables will rarely co-locate 

within a field, data are aligned to a regular grid. Where multiple measurements of the same variable align to the same grid 

location, these are averaged. 

The grid size should be chosen carefully. Previous implementations recommended a grid size of 10 m, which produces a 

reasonable resolution for practical field management. However, the choice of grid size does not only affect the zone reso- 

lution but also the zone coherence. A grid size too large, compared to the resolution of the raw data, will result in a high 

level of spatial averaging and therefore will smooth the data before clustering, something we wish to avoid as detailed in 

Section 2.3 below. On the other hand, a grid size chosen too small compared to the resolution of the raw data will in- 

crease both the spatial sparsity, since not all grid points will have data, and the co-location sparsity, as it will increase 

the number of grid locations with an incomplete set of measurements. This latter point was particularly important in the 

original method of Lark as any grid location without a complete set of observations was fully removed from the dataset. As 

such, choosing too fine a grid, could result in a large loss of data. Since our revised methods allow for locations with an 

incomplete set of measurements, this is no longer a serious issue. 

2.2. Clustering 

Non-hierarchical methods of clustering have been found to outperform the hierarchical methods on field based measure- 

ments due, perhaps in part, to the lack of a hierarchical structure in soil [2] . Furthermore, fuzzy clustering methods enable 

a good assessment of cluster entropy (see Eq. (3) ) and allows one to identify points that lie between clusters, as well as 

those that are easily classified. 

To aid the exposition, we include a description of the original fuzzy c-means algorithm of [10] as follows. Let z iv be the 

standardised observation for variable v = 1 , . . . , p at location i = 1 , . . . , n . The aim of the classification algorithms is to group 

the n objects into k classes. Each class q = 1 , . . . , k is characterised by a centroid vector z̄ q = { ̄z 1 q , . . . , ̄z pq } . A fuzzy c-means 

classification is obtained by minimizing, 

k ∑ 

q =1 

n ∑ 

i =1 

u 

ω 
iq δ

2 
iq , (1) 
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Fig. 1. A flow diagram describing the process by which spatially coherent zones are calculated. Boxes highlighted in grey indicate the implementation of 

our methodological advancements specifically addressing the issues of data sparsity. Boxes highlighted in black indicate additional options one can iterate 

through to refine the formation of zones under high levels of sparsity. 
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where u iq is the membership probability of location i to class q such that 
∑ k 

q =1 u iq = 1 , ω > 1 is the fuzzification parameter 

with values close to 1 resulting in a less fuzzy classification ( ω = 1 , returns the non-hierarchical k-means algorithm). As 

recommended in [2] , we set ω = 1 . 25 . The variable δiq is the vector norm used to measure how well location i resembles 

class q . Here, we use the Euclidean norm, 

δ2 
iq = 

p ∑ 

v =1 

( z i v − z̄ v q ) 
2 
. 

The fuzzy clustering algorithm to minimise (1) is given in Algorithm 1 following the parametrization of [11] . 

Algorithm 1 Fuzzy c-means algorithm. 

For fixed ω, k and ε, 

At iteration r = 0 , 

Initialise cluster centroids z̄ (0) 
1 

, . . . , ̄z (0) 
k 

, where z̄ (0) 
q = { ̄z (0) 

1 q 
, . . . , ̄z (0) 

pq } 

While || ̄z (r+1) − z̄ (r) || < ε, († ) 

Update cluster memberships for u 

(r+1) 
1 

, u 

(r+1) 
2 

, . . . , u 

(r+1) 
n , where u 

(r+1) 
i 

= { u (r+1) 
i 1 

, . . . , u (r+1) 
ik 

} 
For q = 1 , . . . , k , i = 1 , . . . , n , 

u 

(r+1) 
iq 

= 

δ1 / (1 −ω) 
iq 

∑ k 
κ=1 δ

1 / (1 −ω) 
iκ

. 

Update cluster centroids 

For q = 1 , . . . , k , v = 1 , . . . , p, 

z̄ (r+1) 
v q = 

∑ n 
i =1 

(
u 

(r+1) 
iq 

)ω 
z i v 

∑ n 
i =1 

(
u 

(r+1) 
iq 

)ω . 

(† ) || . || denotes the L 1 vector norm. 

The original fuzzy c-means algorithm can only be applied to the subset of locations for which there is a complete set of 

observations over all variables. Rather than removing the set of partially observed grid locations, we consider two options. 

The first runs the fuzzy c-means as above, after which the remaining set of partially observed locations are allocated to each 

cluster q with membership probability, 

u iq = 

D 

1 / (1 −ω) 
iq 

∑ k 
κ=1 D 

1 / (1 −ω) 
iκ

, (2) 

where D iq is the partial distance given by, 

D iq = 

p 

I i 

p ∑ 

v =1 

( z i v − z̄ v q ) 
2 I i v , 

where I iv is the indicator function for z iv observed and I i = 

∑ p 
v =1 

I i v . 

A second option is to explicitly include the partially observed locations in the optimisation algorithm so that both the 

membership probabilities and the cluster centroids are optimised with respect to all available data. [11] compared three 

methods of fuzzy c-means with incomplete data. The best performing algorithm was found to be the optimal completion 

strategy (OCS) which optimises over the unobserved data via an EM-type algorithm (Expectation-Maximization) and is de- 

scribed in Algorithm 2 . 

Both methods result in a vector of membership probabilities u iq for each class, however, choosing the appropriate number 

of clusters remains a subjective decision. Here, we used the normalized classification entropy, ξ ( k ), [12] , to identify the most 

appropriate number of clusters k , 

ξ (k ) = 

−1 

log k 

k ∑ 

q =1 

n ∑ 

i =1 

1 
n 

u iq log u iq . (3) 
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Algorithm 2 Fuzzy c-means algorithm with optimal completion strategy. 

For fixed ω, k and ε, 

At iteration r = 0 , 

Initialise cluster centroids z̄ (0) 
1 

, . . . , ̄z (0) 
k 

, where z̄ (0) 
q = { ̄z (0) 

1 q 
, . . . , ̄z (0) 

pq } 
Initialise missing observations z i v ∈ Z v , v = 1 , . . . , p, where Z v is the set of unobserved data for variable v . 

While || ̄z (r+1) − z̄ (r) || < ε, 

Update cluster memberships for u 

(r+1) 
1 

, u 

(r+1) 
2 

, . . . , u 

(r+1) 
n , where u 

(r+1) 
i 

= { u (r+1) 
i 1 

, . . . , u (r+1) 
ik 

} , 
For q = 1 , . . . , k , i = 1 , . . . , n , 

u 

(r+1) 
iq 

= 

D 

1 / (1 −ω) 
iq 

∑ k 
κ=1 D 

1 / (1 −ω) 
iκ

. 

Update cluster centroids, 

For q = 1 , . . . , k , v = 1 , . . . , p, 

z̄ (r+1) 
v q = 

∑ n 
i =1 

(
u 

(r+1) 
iq 

)ω 
z i v 

∑ n 
i =1 

(
u 

(r+1) 
iq 

)ω . 

Update estimate of missing observations, 

For z i v ∈ Z v , 

z (r+1) 
i v = 

∑ k 
κ=1 

(
u 

(r+1) 
iκ

)ω 
z̄ v κ

∑ k 
κ=1 

(
u 

(r+1) 
iκ

)ω . 

Following [13] , we look for the point, k , that falls below the overall trend, such as a local minimum, or the point at 

which the entropy changes gradient. Note, in the following, we present graphs of 1 − ξ , as this scale typically enabled an 

easier identification of the change points in xi . 

2.3. Spatial smoothing 

In this work, we maintain the recommendation that smoothing should happen after the classification or clustering step. 

Two reasons to do so are, firstly, classifying after spatial smoothing or kriging does not guarantee the spatial coherence 

of the resulting clusters. Specifically, with a view to on-farm management strategies, we aim to force spatial coherence 

since the identification of many disjointed zones would be of little practical use in field. Secondly, to smooth the data 

first, would be to interpolate across the field with the potential effect of artificially increasing the number of completely 

observed locations. By smoothing in the final step of the zoning process, we avoid the need to propagate imputed data (and 

their associated uncertainty) through the cluster algorithms. 

Following [9] , spatial coherence is imposed over the clusters by recalculating the class memberships at each location 

as a weighted average of the neighbourhood of class memberships. Since membership probabilities form a composition 

(constrained to sum to 1), this weighted average is calculated after a symmetric log-transformation of the membership 

probabilities [14] , 

∼
u 

∗
iq = 

∑ 

j ∈ R 
w ( i , j ) 

∼
u jq , 

where ˜ u iq is the transformed membership probability for location i , class q, R defines the radius of a circular neighbourhood 

of location i and w is a weight defined by the dependence between locations i and j . 

The weights w ( i, j ) are formed so that points close to location i are given higher weight than locations further away and 

are derived from the variogram function [15] , 

γ ( h ) = c 0 + c f ( h ) , 

where γ , termed the semi-variance, is a function of the expected mean squared difference between random variables at 

locations separated by a distance h . The variogram therefore characterises the spatial dependence between points and is 
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A B C

D E F

G H

Fig. 2. (A) Locations of the set of complete observations for a single field on a grid size of 5 m. (B) Locations are coloured according to the transformed 

membership probabilities for the most commonly occurring class resulting from a fuzzy c-means clustering with 4 clusters and (C) shows the associated 

variogram. (D) An illustration of the neighbourhood under spatial sparsity. (E) The Voronoi grid of observed spatial locations. (F) Histogram of the length of 

Voronoi cell size, calculated as the square root of the Voronoi cell area. (G) The numerator of the coherence index calculated based on a grid neighbourhood 

(dashed) and a Voronoi neighbourhood (solid). (H) The coherence index calculated based on a grid neighbourhood (dashed) and a Voronoi neighbourhood 

(solid). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

incorporated into the weighted smoothing through the following [9] , 

w ( i , j ) = 

1 − f 
(
h ij 

)
∑ 

l∈ R 1 − f ( h il ) 
, (4) 

where h ij is the distance between points i and j . 

An example variogram is shown in Fig. 2 and illustrates (i) the nugget variance, c 0 , which is the spatially independent 

contribution to the variance, (ii) a period of increasing γ , characterising the property that points separated by a small 

distance h , are more similar than points separated by a large distance h and (iii) a sill, c 0 + c 1 , indicating points separated 

by large distances are spatially independent. 

The inclusion of the variogram function in the definition of the weights provides a rational measure of spatial dependence 

between points. Specifically, [9] and [8] considered models to the multivariate variogram, whilst [7] considered models to 
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A B C

D E F

Fig. 3. (A)–(C) The relationship between the cluster entropy, ξ , and number of clusters. These are illustrative examples of a “bad” (no distinct change point 

in the gradient of entropy can be identified), “moderate” and “good” (a distinctive change in gradient can be identified) cluster assessment, respectively. 

(D)–(E) The coherence index plotted as a function of the smoothing radius. These are illustrative examples of a “bad” (jagged, ill-behaved curve), “moderate”

and “good” (smooth, with clear maximum identifiable) smoothing assessments, respectively. 

Table 1 

The number of datasets used for each data scenario. 

Grid size (m) 

5 10 15 20 

2 5 5 5 5 20 

3 4 4 4 4 16 

Number of variables 4 2 2 2 2 8 

5 3 3 3 3 12 

7 1 1 1 1 4 

15 15 15 15 60 

the variogram of the first principal component of the data. In these papers, the empirical variogram gives a description of 

the general spatial structure across all variables. However, the former approach is restricted to the set of complete obser- 

vations, meaning either all partial observations are removed (a potentially large loss of data) or data are aggregated which 

will reduce the resolution at which the variogram can be calculated. In contrast, the latter approach, using the first principal 

component of the data can incorporate partial observations (through, for example, pairwise deletion or imputation methods 

[16] ) but although the first principal component will provide an overall summary of the data, it is not guaranteed to cap- 

ture spatial variation. Instead, we propose the variogram is calculated from the transformed class membership probabilities. 

Although there will be k possible variograms, one for each class membership, we find in practice that, with the exception 

of the nugget, very little difference can be seen in the variograms of the different class memberships. Thus, the empirical 

variogram is obtained from the transformed membership probabilities of the most commonly occurring class, to which the 

model variogram is fitted. Since there will be a class membership for every location, including those with incomplete mea- 

surements (when implementing the revised cluster algorithms), all locations are included in the calculation of the spatial 

dependence and moreover the variogram will explicitly capture the spatial dependence of the classification. 

Not only is the choice of weights in (4) important, but also the choice of R , the radius of smoothing. If R is too small, 

clusters remain fragmented, whereas for large R , clusters are oversmoothed. [9] , defined a coherence index, I c , which when 

maximised, defines a radius that balances out the need to reduce spatial fragmentation and to ensure the resulting smoothed 
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A

B

C

D

Fig. 4. Results from an empirical study of three fields through an assessment of clustering (A) and (C) and smoothing (B) and (D). (A)–(B) The frequency 

of data scenarios that were considered to have “bad”, “moderate” or “good” assessment for differing numbers of variables (years of data) under each of the 

three clustering options. (C)–(D) The frequency of data scenarios that were considered to have “bad”, “moderate” or “good” assessment for data aligned to 

different grid sizes under each of the three clustering options. Frequency, refers to the number of data scenarios of each type see Table 1 . Cluster option 

1, refers to the original fuzzy c-means, option 2 includes the post-hoc allocation of partially observed locations and option 3 refers to the fuzzy c-means 

with optimal completion strategy. 
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A B

C D

Fig. 5. (A)–(B) Standardised yield measurements over two years, aligned to a 10 m grid. (C) The normalized classification entropy of the fuzzy c-means, 

indicating a choice of 3 clusters is appropriate. (D) The resulting spatially coherent zones (smoothed via the weights of Eq. (4) ). 

clusters are consistent with the original variables, 

I c = 

ηa 
∑ k 

q =1 ψ 

2 
q 

. (5) 

Here ηa is the proportion of pairs of points within a distance a = g 
√ 

2 , where g is the underlying grid size, that belong 

to the same class and ψ q is the proportion of units that belong to class q ( Fig. 2 ). Such a coherence index maximises the 

probability that two individuals separated by a distance a are in the same class, normalized by the probability that two 

randomly selected individuals from the dataset belong to the same class. For complete data, the above coherence index 

works well, however, when data are spatially sparse, this function often has discontinuities making it difficult to optimise. 

This can be understood through the definition of a coherent neighbourhood. Eq. (5) does this based on the neighbourhood 

of the underlying grid. However, when data are spatially sparse, relatively few points will have a complete neighbourhood, 

with many points having, potentially, a single neighbour. Thus, at short ranges, the numerator of (5) quickly saturates. To 

overcome these discontinuities, we instead define I ∗c = η∗
a / 

∑ k 
q =1 ψ 

2 
q , where η∗

a is calculated using a distance of a ∗ such that 

a ∗ is the 25th percentile of the square root of the Voronoi cell area, where the Voronoi grid is defined by the Delaunay 

triangulation of the locations within the field. Defining a neighbourhood based on the observed Voronoi grid ensures a 

reasonable coverage and a consistent coherence index ( Fig. 2 ). 
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A B C

D E

Fig. 6. (A)–(C) Standardised yield measurements over three years, aligned to a 10 m grid. (D) The normalized classification entropy of the fuzzy c-means 

with a nominal selection of 3 clusters. (E) The associated coherence index. 

We also note here, that although in practice the numerator of the coherence index has the largest influence, the denom- 

inator is minimised when clusters are of equal size. This may not, in itself, be a necessary property of the resulting clusters 

and as such, can be downweighted further by raising ψ q to a higher power. 

3. Results 

In this section, we describe the results from an extensive empirical study designed to investigate how the above methods 

address the issues created by different types of data sparsity. Specifically, we have three fields with wheat yield measure- 

ments obtained from multiple years at a reasonable spatial density. We studied the effects of variable sparsity, by restricting 

data to different subsets of years, and the effects of spatial sparsity, by considering different grid sizes, on clustering and 

smoothing. In combination, these enabled us to investigate the effect of colocation sparsity. A summary of these scenarios 

is given in Table 1 . To each data scenario we implemented 3 cluster options, 

1. Original fuzzy c-means, requiring complete observations 

2. Original fuzzy c-means of complete observations with partially observed locations allocated post-hoc to the most 

probable cluster ( Eq. (2) ). 

3. Fuzzy c-means with optimal completion strategy 

and two smoothing options, 

1. Over a neighbourhood defined using the underlying grid alignment 

2. Over a neighbourhood defined using the Voronoi tessellation. 

For these data, explicit information, such as soil maps, that designate a definitive clustering are not available. As such, 

no true validation datasets exist that can be used to calculate algorithm error. Thus, to assess algorithm performance, a 

subjective assessment of the clustering and smoothing was made for each data scenario. The clustering was categorised as 

“good” if a classification could be clearly identified from the calculated cluster entropy, “moderate” if a classification could 

be identified, albeit with some sceptism or “bad” if no clear classification could be identified. The smoothing was categorised 

as “good” if a clear maximum could be identified from the coherence index, “moderate” if a maximum existed but was not 

clearly identified, e.g. through discontinuities in the coherence index and “bad” if no clear maximum could be identified. 

Examples of these categorisations are shown in Fig. 3 . 
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A B C

D E F

G H

Fig. 7. (A)–(E) Standardised yield measurements over five years, aligned to a 5 m grid. (F) The spatial locations of complete observations on a grid of 5 m. 

(G) The normalized classification entropy of the fuzzy c-means. (H) The associated coherence index based on the underlying grid of 5 m (dashed) and 

Voronoi cell length (solid). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

The results of this assessment are shown in Fig. 4 . From here, a tendency for improved clustering with the inclusion of 

more variables can be identified ( Fig. 4 A)). Furthermore at the smallest grid sizes, cluster identification appears to worsen 

as there is a greatly reduced set of locations which are fully observed ( Fig. 4 C)). It is interesting to note, that at the smaller 

grid sizes, the cluster assessment becomes more dichotomous when using the original fuzzy c-means algorithm compared to 

the two alternative clustering methods. This reflects the fact that the fuzzy c-means relies upon having a sufficient number 

of completely observed locations to make an effective assessment. In comparison, the alternative approaches incorporate 

partially observed locations which could both increase available information but also dilute information if there is little 

overlap in the partially observed subset (e.g. many locations for which only a single variable is observed). 

Fig. 4 D) shows a tendency for improved smoothing with a finer grid size, particularly when the clustering algorithm 

allows the inclusion of partially observed locations. In addition, we also find that in scenarios of poorly identified clusters, 

this coincides with a poorer performance of the coherence index, where peaks are difficult to identify and the coherence 

index exhibits jagged behaviour ( Fig. 6 E). This may be due to the relatively little information that distinguishes one location 

from another, regardless of its position in the field. 
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A B C

D E F

Fig. 8. (A) The spatial locations of both complete (black) and partial (grey) observations on a grid of 5 m. (B) The normalized classification entropy of the 

fuzzy c-means. C) The associated coherence index based on the underlying grid of 5 m (dashed) and Voronoi cell length (solid) using all locations through 

a post-hoc allocation of to the nearest cluster. (D) The spatial locations of both complete (black) and partial (grey) observations on a grid of 5 m. E) The 

normalized classification entropy of the OCS fuzzy c-means. (F) The associated coherence index based on the underlying grid of 5 m (dashed) and Voronoi 

cell length (solid). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

4. Discussion 

Identifying variable sparsity 

Results shown in Section 3 indicated that cluster identification often improves with the inclusion of more variables. 

However, distinct zones and clusters can still be formed from just two years worth of data as shown in Fig. 5 . Furthermore, 

the inclusion of more variables does not guarantee cluster formation ( Fig. 6 ). 

Thus, before proceeding with the formation of coherent spatial zones, the raw clustering output should be evaluated 

through an assessment of the cluster entropy (Step 4 in Fig. 1 ). We have found the minimum number of years required to 

result in a reasonable clustering (as identified from the entropy) to depend both on the field and the particular subset of 

years considered. Thus, although there exist recommendations in the literature, (see e.g. [5] for assessment of cotton yields), 

we recommend a case by case evaluation of the clustering to determine whether resulting zones will be distinct enough to 

be of use. 

Spatial sparsity impacts coherence and smoothing 

Fig. 7 , shows 5 years of yield data for a single field. When these data are aligned to a 5m grid, there are relatively few 

locations for which there are a complete set of observations. Despite so few locations with a complete set of observations, 

clusters can be well-identified. However, due to the spatial sparsity, they cannot be made spatially coherent with the co- 

herence index of Lark. Moreover, although the revised coherence index based on the Voronoi cell size is an improvement, 

it does not identify an optimal smoothing range (at Step 6 of Fig. 1 ). In this scenario, data are too sparse to form coherent 

zones. 

Spatial sparsity can be mitigated by retaining the partially observed locations. This can be done through either of the 

revised clustering algorithms outlined in Section 2.2 (Step 3 of Fig. 1 ). When implementing the revised clustering algorithms 

to allow for partially observed locations, a much finer grid of spatially dense data can be used ( Fig. 8 ). The consequence 

of such is to provide a much improved (smooth and well-defined) coherence index. We find both methods to perform 

well, although the post-hoc allocation of partial observations will not guarantee clusters to be defined consistently as the 
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Fig. 9. (A) The spatial locations of complete observations on a grid of 10 m. (B) The normalized classification entropy of the fuzzy c-means. (C) The 

associated coherence index based on the underlying grid of 10 m (dashed) and Voronoi cell length (solid). (D) The spatial locations of complete observations 

on a grid of 15 m. (E) The normalized classification entropy of the fuzzy c-means. (F) The associated coherence index based on the underlying grid of 15 m 

(dashed) and Voronoi cell length (solid). (G) The spatial locations of complete observations on a grid of 20 m. (H) The normalized classification entropy of 

the fuzzy c-means. (I) The associated coherence index based on the underlying grid of 20 m (dashed) and Voronoi cell length (solid). (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 

cluster centroids are not optimised over the partially observed locations. In implementing the optimal completion strategy, 

the clustering algorithms required more iterations to converge, and it is sometimes the case that for many locations with 

partially observed data, may fail to converge. In practice, one may need to consider a combination of variable-wise and 

unit-wise deletion of observations to reduce the colocation sparsity. 

An alternative solution, is to increase the grid size ( Fig. 9 ). As the grid size increases, the spatial sparsity decreases and 

the coherence index is better identified. However, for larger grid sizes, the coherence index is less smooth reflecting the 

higher level of discretization in the grid alignment. Fig. 9 shows a grid size of 15m to be a reasonable compromise between 

a reduction of spatial sparsity without too much discretization. 
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Fig. 10. (A)–(G) Standardised yield measurements over 7 years, aligned to a 10 m grid. (H) The spatial locations of both complete (black) and partial 

(grey) observations on a grid of 10 m. (I) The normalized classification entropy of the fuzzy c-means. (J) The associated coherence index based on the 

underlying grid of 10 m (dashed) and Voronoi cell length (solid) and (K) the associated smoothed clusters. (L) The normalized classification entropy of 

the OCS fuzzy c-means. (M) The associated coherence index based on the underlying grid of 10 m (dashed) and Voronoi cell length (solid) and (N) the 

associated smoothed clusters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Mitigating data loss from colocation sparsity 

Figs. 10 and 11 , demonstrate one of the key advantages to the methodological extensions outlined in Section 2 . Specif- 

ically, these are two additional fields for which many data are available. In particular, yield measurements have been col- 

lected for 7 and 8 years respectively. However, with an increase in the number of years measured, the co-location sparsity 

increases, resulting in fewer locations having a complete set of observations. The subsequent zones, obtained from the orig- 

inal approach of Lark, although identified, are at a relatively low spatial resolution. It can be seen that allowing for partial 

observations, increases the spatial resolution of the resulting zones but not at the cost of zone coherency. 
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Fig. 11. (A)–(H) Standardised yield measurements over 8 years, aligned to a 10 m grid. (I) The spatial locations of both complete (black) and partial (grey) 

observations on a grid of 10 m. (J) The normalized classification entropy of the fuzzy c-means. (K) The associated coherence index based on the underlying 

grid of 10 m (dashed) and Voronoi cell length (solid) and (L) the associated smoothed clusters. (M) The normalized classification entropy of the OCS 

fuzzy c-means. (N) The associated coherence index based on the underlying grid of 10 m (dashed) and Voronoi cell length (solid) and (O) the associated 

smoothed clusters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

5. Conclusion 

The methodological advances described in Section 2 enable a more efficient use of data by discarding less information 

in the formation of spatially coherent zones. In particular, we have shown that by extending the clustering methods to 

cope with partially observed locations, more data are available as input to the coherence index and resulting variogram 

smoothing. Furthermore, by obtaining a variogram of the transformed class memberships, a complete set of data is available 

to determine any spatial dependence. However, the membership at each location will not be equally reliable as some will 

be based on incomplete data. Although this uncertainty is not accounted for explicitly, to a great extent, it will be captured 

through the class membership probabilities. For example, a location with only a single observation is likely to have a flatter 

distribution of membership probabilities as it is less clearly associated with a particular cluster profile. 

However, despite the advancements described in this paper, a certain level of manual assessment remains a key compo- 

nent. As shown in Fig. 1 , an assessment of cluster entropy is required to identify the presence, and associated number, of 
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distinct clusters. Clusters may not be identifiable in the presence of high levels of colocation sparsity (equivalently, in sce- 

narios with a high proportion of locations with an incomplete set of observations). This may be addressed (i) by removing 

locations with a high proportion of missingness or (ii) by aligning data to a coarser grid. If neither option enables the iden- 

tification of clusters, more variables are needed to inform the clustering. It is a topic of ongoing work to include alternative 

data sources, including subjective information, into the methodology in order to better define zones for farm management. 

Once clusters have been identified, a second manual assessment can be made of the associated neighbourhood coherence 

index. This coherence index identifies the range over which to smooth the cluster zones. We have seen that by implementing 

a Voronoi neighbourhood definition, this coherence index can be more reliably defined under spatial sparsity. However, a 

manual assessment of the index may still identify a “jagged” behaviour indicative of data that are too spatially sparse. 

To address this issue, we may consider aligning data to a coarser grid to reduce spatial sparsity at a cost of lower data 

resolution. 

In summary, data sparsity will always be present in one form or another. In this paper, we have investigated the effects 

of different types of sparsity; variable, spatial and colocation sparsity and how these can be mitigated. In addition, we have 

provided guidance both on the steps to forming spatially coherent zones and how the use of manual assessments can be 

used to identify data scenarios that are too sparse to reliably form coherent field zones. 
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