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ABSTRACT

Madden, L. V., Jeger, M. J., and van den Bosch, F. 2000. A theoretical
assessment of the effects of vector-virus transmission mechanism on plant
virus disease epidemics. Phytopathology 90:576-594.

A continuous-time and deterministic model was used to characterize
plant virus disease epidemics in relation to virus transmission mechanism
and population dynamics of the insect vectors. The model can be written
as a set of linked differential equations for healthy (virus-free), latently
infected, infectious, and removed (postinfectious) plant categories, and
virus-free, latent, and infective insects, with parameters based on the trans-
mission classes, vector population dynamics, immigration/emigration rates,
and virus-plant interactions. The rate of change in diseased plants is a func-
tion of the density of infective insects, the number of plants visited per
time, and the probability of transmitting the virus per plant visit. The rate
of change in infective insects is a function of the density of infectious
plants, the number of plants visited per time by an insect, and the prob-
ability of acquiring the virus per plant visit. Numerical solutions of the
differential equations were used to determine transitional and steady-state
levels of disease incidence (d*); d* was also determined directly from the
model parameters. Clear differences were found in disease development
among the four transmission classes: nonpersistently transmitted (stylet-

borne [NP]); semipersistently transmitted (foregut-borne [SP]); circula-
tive, persistently transmitted (CP); and propagative, persistently trans-
mitted (PP), with the highest disease incidence (d) for the SP and CP classes
relative to the others, especially at low insect density when there was no
insect migration or when the vector status of emigrating insects was the
same as that of immigrating ones. The PP and CP viruses were most af-
fected by changes in vector longevity, rates of acquisition, and inocula-
tion of the virus by vectors, whereas the PP viruses were least affected by
changes in insect mobility. When vector migration was explicitly consid-
ered, results depended on the fraction of infective insects in the immi-
gration pool and the fraction of dying and emigrating vectors replaced by
immigrants. The PP and CP viruses were most sensitive to changes in
these factors. Based on model parameters, the basic reproductive number
(R0),number of new infected plants resulting from an infected plant
introduced into a susceptible plant population,was derived for some cir-
cumstances and used to determine the steady-state level of disease incid-
ence and an approximate exponential rate of disease increase early in the
epidemic. Results can be used to evaluate disease management strategies.

Additional keywords: compartmental model, nonlinear model, strategic
modeling, theoretical epidemiology.

Viruses with insect and other arthropod vectors cause many eco-
nomically important plant diseases of both annual and perennial
crops in tropical and temperate regions (37,39). Disease incidence
depends on many factors including the number and behavior of
vectors, the resistance of plants to the viruses and vectors, and the
virus transmission process (14,35,36). Transmission class is of fun-
damental importance for characterizing the relationship between a
plant virus and its (primarily homopteran) insect vector (25) and is
putatively a key factor in virus disease development under a given
set of environmental and host conditions (2). However, little effort
has been made in determining the influence of the insect-virus in-
teraction on the resulting epidemics in the general sense (8). Un-
derstanding this relationship could lead to improved selection of
management strategies for different virus diseases. We show in this
paper that nonlinear modeling is a useful way to understand the
linkages between transmission class and plant disease development.

We follow Nault (28) and use a classification system that com-
bines the systems based on the persistence of the virus in the vec-
tor (40,41) and the mode (or mechanism) of transmission (20).
Persistence is defined in terms of the retention time of the plant
virus in its vector, and three categories have been designated: non-
persistent, semipersistent, and persistent. Mode of transmission can

be categorized as stylet-borne, foregut-borne, circulative, and propa-
gative. Combining these produces four classes: (i) nonpersistently
transmitted, stylet-borne (‘nonpersistent’ [NP]); (ii) semipersistently
transmitted, foregut-borne (‘semipersistent’ [SP]); (iii) circulative,
persistently transmitted (‘circulative-persistent’ or simply circula-
tive [CP]); and (iv) propagative, persistently transmitted (‘propa-
gative-persistent’ or simply propagative [PP]). For the propaga-
tive-persistent class, the virus multiplies in the insect vector as well
as in the plant host. Nault (28) provided a thorough synthesis of
the transmission processes and showed the value of these classes
for systematics and ecology.

It is well known that certain management tactics work best only
for viruses in some transmission classes (34,37). For instance, in-
secticide sprays often are not effective for nonpersistent viruses,
because the pesticide does not work fast enough to prevent virus
acquisition or inoculation (34,37). In fact, increased (but tempo-
rary) mobility of the vectors sprayed with insecticide may lead to
increased disease incidence. On the other hand, the propagative-per-
sistent viruses are more readily controlled with insecticides (31,34).
However, other than the insecticide tactic, there has been little
research on the relationship between transmission class and dis-
ease control, in particular, or disease dynamics, in general. There
are many ways of assessing the impact of virus transmission class
on epidemics and effectiveness of controls, ranging from field ex-
periments involving specific pathosystems to modeling of virus
disease dynamics in relation to transmission properties. An advan-
tage of the latter is that one can focus on consequences of differ-
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ent transmission classes for fixed conditions of vector dynamics
(independent of the plant virus) and host susceptibility.

Before 1998, only Ferriss and Berger (8) had explicitly focused
on the consequences of transmission class on resulting epidemics.
They used a discrete-time, stochastic simulation approach to model
the spread of hypothetical virus diseases in a spatial lattice of plants.
Their excellent paper showed, among other things, that transmis-
sion class can have a large effect on disease development. Their
model was somewhat limited by lack of reproduction in the plant
and vector populations, fixed and equal number of vectors and virus
transmission probabilities for all transmission classes, and rela-
tively short time durations of the epidemics. Jeger et al. (18) re-
cently proposed a more general, deterministic, continuous-time pop-
ulation-dynamic model for plant virus diseases in relationship to
insect vector dynamics that is analogous to some models devel-
oped for human pathogens with vectors (such as malaria [32]), but
explicitly considers the characteristics of the four transmission
classes. Jeger et al. (18) determined equilibrium or steady-state
values of plant disease and insect populations in order to deter-
mine conditions that resulted in persistence of disease in the plant
population. Large differences in steady states were found between
the propagative viruses and the others for the situation with no
insect migration. Only limited numerical results were determined
for epidemic behavior over the full range of time values during an
epidemic, and numerical results and analyses of steady states were
not presented for the case of explicit insect migration.

The objective of this paper is to expand on the theoretical work
of Jeger et al. (18) to gain insight into how transmission class can
affect epidemics caused by plant viruses with arthropod vectors.
To accomplish this objective, we explore properties of the plant
virus disease model under a range of conditions involving either
no explicit vector migration or with vector immigration and emi-
gration. We use the results to evaluate the implications of trans-
mission class on some disease management strategies.

THEORY AND APPROACHES

Virus transmission. The four transmission classes can be dis-
tinguished by the (mean) times for virus acquisition, inoculation
(transmission), and latent period in the insect vector (28). Con-
sider the time line in Figure 1, in which T represents the time that
an insect is ‘in contact’ with a plant. T can be thought of as feed-
ing or probing time by an insect, but there is no assumption that
the vector is actually feeding (probing) throughout this time. If a
virus-free insect is placed on an infected and infectious (discussed
below) plant at T = 0, acquisition proceeds at a rate of λ (units of
per time), corresponding to a mean acquisition time in a popula-
tion of insects (if no mortality occurs) of 1/λ (units of time [e.g.,
days]). The virus passes through the latent period in the vector at a
rate of η, corresponding to a mean latent period (in a population)
of 1/η. For some classes, 1/η is 0. The insect vector then becomes
infective (or inoculative) and passes through this infectious period
at a rate of τ, corresponding to a mean time of 1/τ for a population

of insects (when there is, again, no mortality). Infective indicates
that the insect is capable of transmitting the virus to a healthy
(susceptible and virus-free) plant. Values of 1/τ can be as large as
the life of the insect to as small as an hour (or less). Once an in-
sect is no longer infective, it can reacquire the virus from an in-
fected plant. A vector is said to be viruliferous from the time it
acquires a virus until the virus is lost. The sum of 1/η and 1/τ is
often termed the virus retention time.

If an infective insect feeds on a virus-free plant (Fig. 1, the di-
agonal time lines intersecting the infectious period time line), it
transmits at a rate of k1, corresponding to a mean time of inocula-
tion of 1/k1 (when there is no mortality). An individual infective
insect can transmit a virus to more than one plant, given sufficient
time and access.

Times for acquisition, inoculation, and length of retention in the
vector are often determined for plant viruses (2,28). Many studies,
however, record the minimum times for a population of insects
rather than the mean or median (Discussion in literature citation
2). Because the minimum (threshold time) is heavily influenced
by the number of insects (and plants) tested, it is difficult to de-
termine exact values for the parameters 1/λ, 1/η, 1/τ, and 1/k1. How-
ever, approximate order-of-magnitude values can be easily specified
based on a general assessment of the published values. Nault (28)
indicated that acquisition time is of the order of seconds to min-
utes, minutes to hours, hours to days, and hours to days for the
nonpersistent, semipersistent, circulative, and propagative transmis-
sion classes, respectively. Latent periods are essentially 0 for non-
and semipersistent viruses, and of the order of hours to days and
weeks for the circulative and propagative viruses, respectively.
Retention time (latent plus infectious period) is of the order of
minutes, hours to days, days to weeks, and weeks to months for
the four classes (28). These values are for normal conditions when
the vectors are feeding and moving among plants in the same field
or nearby fields. It is known that the retention time can be much
longer for the nonpersistent class when vectors are not ‘in contact’
with plants, such as when they are traveling in jet streams over large
distances (3).

Based on Nault (28) and Berger and Ferriss (2), we have
chosen nominal values for these parameters (Table 1). We
further assume here that times for acquisition and inoculation
are the same within each class, but these times can be (very)
different across classes. Values in Table 1 are given in units of
days, with corresponding hours presented in parentheses for some
very short times. Based on these parameter values, non- and
semipersistent viruses are acquired and transmitted very quickly,
with essentially no time lapse between acquisition and
inoculation. Insects also quickly lose the ability to transmit the
viruses in these two classes, such that reacquisition is needed
for continued inoculations. Conversely, propagative and, to a
lesser extent, circulative viruses are acquired (and transmitted)
slowly, with a substantial period of time between acquisition
and inoculation; however, the insect remains infective for a long
time.

Fig. 1. Time line of an insect vector feeding on a plant, starting at time (T) 0.
Virus acquisition occurs at a rate of λ from a virus-infected (and infectious)
plant, the virus passes through the latent period in the vector at a rate of η,
and the virus passes through the infectious period in the vector at a rate of τ.
When feeding on a virus-free (healthy) plant, inoculation occurs at a rate of
k1 (diagonal time lines show inoculations).

TABLE 1. Relevant parameters for the four plant virus transmission classes:
nonpersistently transmitted, stylet-borne (NP); semipersistently transmitted,
foregut-borne (SP); circulative, persistently transmitted (CP); and propagative,
persistently transmitted (PP)

Time and other
parametersa NP SP CP PP

Acquisition (1/λ) 0.021 (0.5 h) 0.083 (2 h) 0.5 (12 h) 2.0 (48 h)
Inoculation (1/k1) 0.021 (0.5 h) 0.083 (2 h) 0.5 (12 h) 2.0 (48 h)
Latent period (1/η) 0 0 1 20
Infectious period (1/τ) 0.25 (6 h) 4 20 ∞
Viruliferous progeny (q) 0 0 0 0.5

a Parameters refer to the plant virus interaction with the insect vector. All
listed parameters are times, except for q, which is unitless. Units shown are
days (with hours in parentheses for some short times).
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A further characteristic that separates propagative from the other
classes is transovarial transmission of the virus from females to
progeny. For this class, a fraction of the eggs laid (q) are infected
by the plant virus. For the other transmission classes, q is 0.

Model. Plant population. The plant population consists of K in-
dividuals that are partitioned into four nonoverlapping compart-
ments (stages, categories, or states): healthy or susceptible (virus
free) (H), latently infected (L), infectious (S), and removed (R). H,
L, S, and R represent the numbers of plants in each category (Fig.
2). The number of diseased individuals (D) is given by L + S + R
or by K – H. When an individual plant becomes infected (dis-
cussed below), it moves through the latent stage at a rate of k2

(units of per time [e.g., per day]) into the infectious stage, corre-
sponding to a mean latent period in a population of 1/k2 (days)
when there is no mortality (Fig. 2). Latent indicates that the plant
is infected but that insect vectors are not yet able to acquire the
virus from the plant because sufficient virus multiplication and
intraplant spread has not yet occurred. For annual crops, 1/k2 is
generally at least 5 days for most viruses; mean latent periods can
be much longer for perennials. When a plant is infectious, a virus-
free insect vector can acquire the virus, assuming that it feeds
from an infectious plant for a sufficient period of time.

Infected plants lose infectiousness and proceed into the re-
moved or postinfectious stage at a rate of k3 (units of per time),
giving a mean infectious period of 1/k3 when there is no mortality
(Fig. 2). The removed state occurs because the virus titer becomes
too low for acquisition or the diseased plant no longer is attractive
for insect feeding (Fig. 1 in literature citation 6). Values of 1/k3

can be as long as the life of the plant or be relatively short. When
a plant is removed, an insect can no longer acquire the virus from
the infected plant. In the model, plants do not recover from infec-
tion; that is, removed plants do not become susceptible. The val-

ues of 1/η and 1/τ for the vector-virus interaction are not related to
the values of 1/k2 and 1/k3 for the plant-virus interaction.

Plants die in the model in all categories at a rate of β (per time),
independent of infection status in the model. To maintain a con-
stant plant population size, dead plants are replaced at the same
rate, β (Fig. 2). This would be analogous to the replanting of dead
plants in an orchard or to the production of new plant units (e.g.,
tillering) as plants die. This rate can, of course, be 0.

Plant infection and rate equations. Linked differential equations
were specified directly for the four plant categories (H, L, S, and
R) based on the specifications given here, rather than directly spec-
ifying an equation for D. This is the standard approach in medical
epidemiology (1). An equation for D can then be determined using
algebra. The equation for H can be written generally as

( )dH

dt
f H H= − Λ (1)

in which f(H) is a function for change in host population size in-
dependent of disease, and Λ is the so-called force of infection, the
probability per unit of time that a healthy (susceptible) plant be-
comes infected (1). Based on the assumptions described in the pre-
vious paragraph, we set f(H) equal to β(K – H). To directly account
for insect transmission, Λ must be based on the number of infec-
tive insects (Z) rather than on the number of infectious plants (S)
or number of diseased plants (D), as is commonly done for simpler
models (4,6,23). We specify the following expression for Λ as

Λ = φbZ K (2)

in which φ is a parameter for the number of plants visited per time
period (e.g., per day) by an insect, and b is the probability of in-
oculating the plant per visit (a value between 0 and 1). Determi-

Fig. 2. Schematic of the plant-virus insect-vector model. Variables are in boxes, and parameters are listed next to the lines and arrows. Tables 1 and 2 have an
explanation of terms. For ease of presentation, full specification of model terms are not given. For instance, the insect emigration rate parameters (e.g., EX) are
multiplied by the insect numbers in a given category (EX · X), but the immigration rates (e.g., IX[t]) are arbitrary functions of time. Equations 4 and 6 have de-
tails. Diagonal lines represent the ‘contact’ between infective insects and healthy plants, and between infectious plants and virus-free insects.
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nation of Z is explained below. Plants become infected based on
the ‘contact’ between healthy plants (H) and infective insects (Z),
which is modeled as a product of these two terms and the rate
constant φb (Fig. 2).

The value of b can be calculated based on mean inoculation
times (1/k1) (Fig. 1) as

b e k T= − −1 1 (3)

in which T is the time of feeding per plant visit. Equation 3 can be
derived from the Poisson distribution. Using the values of the
transmission class parameters (Table 1), predicted values of b are
shown in Figure 3. For small values of k1 and T, equation 3 is
approximately equal to k1T, so that φb in equation 2 is k1φT. φT
can then be considered the fraction of each day that an insect
feeds (or is ‘in contact’ with a plant). This was the formulation
used by Jeger et al. (18). However, we use equation 3 directly in
the expression for the force of infection (equation 2) to avoid ob-
taining unrealistically high values of the product k1φT for some
transmission classes.

Using equation 2 for the force of infection, the linked differen-
tial equations for the plant population are

( )dH

dt
K H b

ZH

K
= − −β φ

( )dL

dt
b

ZH

K
k L= − +φ β2

(4)

( )dS

dt
k L k S= − +2 3 β

dR

dt
k S R= −3 β

The equation for R is redundant when the plant population size is
fixed (R = K – [H + L + S]), but is included here for completeness.

Equation 4 is the mathematical equivalent of the left-hand col-
umn of Figure 2. The last term of dH/dt and first term of dL/dt
represent both the decline in the number of healthy plants and
increase in the number of diseased plants (which start as latently
infected individuals). The k2L term in dL/dt and dS/dt represents
the transition from the latent to infectious state; the k3S term in
dS/dt and dR/dt represents the transition from the infectious to re-
moved state. The β terms represent the plant mortality and replant-
ing rates. Specifically, the products of β with L, S, and R represent
mortality, whereas the product of β and H represents new growth.

Insect vector population. In addition to the infective state (Z),
insects can be classified with respect to plant viruses as being virus
free (X) and in the latent (Y) state (Fig. 2), in which X, Y, and Z
represent the numbers in each category (Fig. 2). Total insect popu-
lation size is P (P = X + Y + Z). As described above for the trans-

mission classes (Fig. 1), when an insect acquires the plant virus,
the virus passes through the latent state at a rate of η and through
the infectious state (back to the virus-free state) at a rate of τ
(Table 1).

Population sizes (X, Y, and Z) are affected by reproduction
(‘birth’) and death. Except for propagative viruses (in which q > 0),

Fig. 3. Probability of an insect acquiring a virus from a plant (a) or transmit-
ting (inoculating) a virus to a plant (b) in relation to time of feeding (T) for non-
persistent (NP), semipersistent (SP), circulative-persistent (CP), and propagative-
persistent (PP) classes, based on values of parameters in Table 1.

TABLE 2. Variables and parameters in the plant virus-vector model

Term Explanation (initial conditions or nominal values)

t Time during an epidemic (0→∞; nominal: 0→200 days)
T Time feeding (probing) per plant visit (nominal: 0.5/φ)
K Total plant population size (nominal: 1,000)
L Number of latently infected plants (L0 = 0.002K); l = L/K
S Number of infectious plants (S0 = 0); s = S/K
R Number of removed (postinfectious) plants (R0 = 0); r = R/K
H Number of healthy (susceptible and virus-free) plants (H0 = K – [L0 +

S0 + R0]); h = H/K
D Diseased plants (D0 = L0 + S0 + R0); d = D/K = 1 – h = l + s + r
d* Equilibrium (steady-state) value of d corresponding to a dynamic

plant host (β > 0/day) (equation 12)
d∞ Asymptotic value of d as t goes to ∞, when there is no steady state

(because β = 0/day) (equation 13)
Λ Force of infection (equation 2)
P Number of insect vectors (nominal: depends on transmission class)
P/K Insects density (per plant)
Y Number of insects in latent state (stage or category) (Y0 = 0.005P);

y = Y/K
Z Number of infective insects (Z0 = 0); z = Z/K
Z/P Fraction of infective insects in the vector population
X Number of virus-free insects (X0 = P – [Y0 + Z0]); x = X/K
1/k1 Time to inoculate a plant by an insect vectora

1/k2 Latent period of virus in plant (nominal: 5 days)
1/k3 Infectious period of virus in plant (nominal: 12.5 days)
β Plant mortality and replanting (regrowth) rate (nominal: 0.01/day)
φ Plants visited per day by an insect (nominal: 1/day)
1/λ Time to acquire a plant virus by a vectora

1/η Time for plant virus to move through latent state in the vector
(latent period)a

1/τ Time for plant virus to move through infectious state in the vector
(infectious period)a

a Probability of acquisition of a plant virus from an infectious plant
by an insect per plant visit (equation 5)

b Probability of virus inoculation of a plant by an infective insect per
plant visit (equation 3)

α Insect population mortality rate in full (variable-P) model (equation 6);
or turnover rate (‘birth’ and death rate) in fixed-P Model I
(equation 9) (nominal: 0.2/day)

υ(t) Arbitrary total fecundity (‘birth’) rate of insect population (per day) for
within-field reproduction; for fixed-P Model I: υ(t) = α · (X + Y + Z)

EX Emigration rate for virus-free insects (nominal: 0/day) in the full
(variable-P) model

EY Emigration rate for insects in latent state (nominal: 0/day)
EZ Emigration rate for infective insects (nominal: 0/day)
IX(t) Immigration rate for virus-free insects (nominal: 0/day)
IY(t) Immigration rate for insects in latent state (nominal: 0/day)
IZ(t) Immigration rate for infective insects (nominal: 0/day)
q Probability of a vector offspring being viruliferousa

V Vector emigration rate for Model II (equation 14), total (and fixed)
number of vectors that emigrate per day (nominal: equivalent to
0/day for the no-explicit-migration Model I)

ψ Fraction of emigrating and dead vectors replaced by within-field
reproduction in Model II (equation 14) (nominal: equivalent to 1
for Model I)

θ1 Fraction of immigrants that are virus free in Model II (equation 14)
(nominal: not relevant for Model I)

θ2 Fraction of immigrants in the latent state in Model II (equation 14)
(nominal: not relevant for Model I)

1 – θ1 – θ2 Fraction of immigrants that are infective in Model II (equation 14)
(nominal: not relevant for Model I)

σ aφ/τ (derived parameter for the limit when η = τ = ∞) (equation 18);
applicable for nonpersistent viruses only

R0 Basic reproductive number (equation 11)
rE Exponential rate of disease increase early in an epidemic; directly

relevant only for Model I (equation 16)
µ Mean age of a infectivity of an individual (plant or insect) (equation 17)

a Table 1 has nominal values for the four transmission classes.
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all progeny of insects are virus free in the model, meaning that
only X increases due to reproduction for the other three transmis-
sion classes. Total population fecundity (reproductive or ‘birth’) rate
at time t is given by the general expression υ(t). When q > 0, both
X and Z can increase due to reproduction, thus, the fecundity rate
in the X state is reduced from the total υ(t) to

( ) ( )υ υt t q
Z

X Y Z
−

+ +






in which Z/(X + Y + Z) = Z/P is the fraction of infective insects in the
population. The rate of change of Z increases by υ(t)qZ/(X + Y + Z)
when q > 0, because some offspring are infective. Probability of
dying in a unit of time is α, assumed to be the same for each state;
X, Y, and Z thus decrease at rates of αX, αY, and αZ, respectively.

Values of X, Y, and Z also are affected by immigration and emi-
gration (Fig. 2). We assume that immigration rates are independ-
ent of insect numbers within a field, but possibly vary with time.
Thus, X, Y, and Z in a given plant virus pathosystem can increase
at rates of IX(t), IY(t), and IZ(t), respectively. On the other hand,
emigration is assumed to depend on the numbers of insects within
the field. Thus, X, Y, and Z decrease at rates of EXX, EYY, and EZZ,
respectively. (It should be noted here that the schematic in Figure
2 shows the variables and parameters of relevance, but it does not
fully reflect every rate term considered. For instance, to avoid clut-
ter in the figure, it is not specified which terms involve multiplica-
tion with a variable [e.g., EXX] and which ones do not [e.g., IX]).

Insect vectors acquire the virus based on the ‘contact’ between
virus-free insects (X) and infectious plants (S). The rate is given
by φaXS/K, in which φ is as previously defined, and a is the prob-
ability of a virus-free insect acquiring the virus per plant visit. As
with b in equation 4, a can be determined from

a e T= − −1 λ (5)

in which λ and T are shown in Figure 1. Although Jeger et al. (18)
used the approximation λφT for φa (because a ≈ λT when λ and T
are small), we prefer to use φa directly in the equations to ensure
realistic ‘contact’ rate results for large λ. Although b goes to 1
quickly with increasing T (Fig. 3), especially for the nonpersistent
and semipersistent viruses, this does not indicate that 100% of
vectors are viruliferous at any single time. This is because of the
short infectious periods for these classes (1/τ), meaning that the
virus is lost rather quickly by insects for these transmission classes.

Based on the model assumptions given here, the differential equa-
tions for X, Y, and Z can be written as

( ) ( ) ( )dX

dt
t t q

Z

X Y Z
Z I t E X X a

SX

KX X= −
+ +







+ + − − −υ υ τ α φ

( )dY

dt
a

SX

K
I t E Y Y YY Y= + − − −φ α η (6)

( ) ( )dZ

dt
Y Z I t E Z t q

Z

X Y Z
ZZ Z= − + − +

+ +






−η τ υ α

Simplifications and scaling. Equations 4 and 6 can be used to
represent a plant virus epidemic under very general circumstances
for insect population development. Although there is no analytical
solution for linked differential equations of this type, numerical
integration is straightforward. Because of the large number of terms
for insect development (equation 6), including fecundity (‘birth’)
and mortality (death) rates and immigration and emigration rates
in each category, it is difficult to focus on the general effects of
transmission class on the epidemics. Thus, some simplifications
are justified to gain insight on transmission. The primary simplifi-
cation used here is to specify a constant size of the insect popula-
tion (P = X + Y + Z). Essentially, this converts the variable P into
a parameter. The individual insect classes (X, Y, and Z) all still
vary over time, but the total is fixed.

For convenience of interpretation, the variables in equations 4 and
6 were scaled by dividing by K, the total number of plants. The
new variables are h = H/K, l = L/K, s = S/K, r = R/K, x = X/K, y =
Y/K, and z = Z/K. With this scaling, h + l + s + r = 1, and d (= [L +
S + R]/K) is given by 1 – h and l + s + r. Also, x, y, and z represent
the numbers of insects per plant (density terms) and P/K = x + y + z.

Two forms of the model can be considered as further simplifi-
cations. The first stipulates that loss of insects due to emigration
are made up by immigration in the same category. For instance, if
10 vectors in the Z category emigrate, 10 infective insects immi-
grate into the field. This is based on a supposition that the popula-
tion of insects is the same globally as locally. From a mathemati-
cal perspective, this is equivalent to making all the immigration
and emigration terms 0. With a fixed P, ‘births’ and deaths are
balanced, resulting in the following equality.

( ) ( )υ αt X Y Z= ⋅ + + (7)

α is then both a fecundity (‘birth’) and death rate (Table 2) and
can be considered a turnover rate of the insect population. High
values of α indicate a short life span of insects, and low values
indicate that individuals live for long times; when α = 0/day, there
are no ‘births’ or deaths, and the same insects are present for the
entire time period of the epidemic.

With the scaling of variables, the plant equations can be written
after algebraic manipulation as

( )dh

dt
h bzh= − −β φ1

( )dl

dt
bzh k l= − +φ β2 (8)

( )ds

dt
k l k s= − +2 3 β

with the equation for dr/dt omitted because of redundancy (because
r = 1 – [h + l + s]) (18). The insect equations can be written as

dy

dt
as

P

K
y z y y= − −





− −φ α η
(9)

dz

dt
y z z q z= − − +η τ α α

with the equation for dx/dt omitted because x = P/K – y – z. We
call this Model I. For the nonpersistent and semipersistent classes,
y (or Y) equals 0, indicating that the rate of transfer through the Y
category is infinite. One way of obtaining numerical solutions with
equation 9 for the non- and semipersistent classes is to use a large
value for η as an approximation. An alternative, which was not
presented by Jeger et al. (18), is to mathematically eliminate the
equation for dy/dt (because η = ∞), producing the single equation
for the vectors

dz

dt
as

P

K
z z z q z= −





− − +φ τ α α (10)

Because q = 0 for these classes, qαz can also be removed from
equation 10.

This continuous-time model (equations 8 and 9 [or 10]) is similar
to several other compartmental models of plant and animal diseases
(1,6,10,15) (chapter 9 in literature citation 4), except that the force
of infection (equation 2) is based on Z and not S (the vector is ex-
plicitly considered). It is also similar to some vector-pathogen mod-
els (12,13,23,24,27,32), but is more general because all four cate-
gories of disease in the host population are explicitly considered and
proper choice of model parameters (Table 1) permits the representa-
tion of epidemics caused by all four transmission classes.

Equilibria. Jeger et al. (18) found that nonzero equilibria or
steady states can exist for plant and insect categories under some
circumstances (parameter values) if β is greater than 0/day. A nonzero
steady state for d (d*) means that disease can persist in the plant
population. It is possible to determine the conditions necessary for
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the disease to persist by equating the differential equations
(equations 8 and 9 [or 10]) to 0 and by (extensive) algebraic
manipulations to calculate the combinations of parameters that give
a nonzero value of z (and, hence, s and d). Some of the
equilibrium equations are given in the Appendix.

Based on the steady-state expressions, a threshold for persis-
tence of disease can be determined in terms of model parameters
and, from this threshold, the basic reproductive number (R0) can
be derived (7) for the plant virus epidemic. For the simpler differ-
ential-delay model of Vanderplank (38), R0 is known as the prog-
eny-parent ratio (“ iR” using the symbols of Vanderplank, different
from those used here). R0 is the (average) number of new infected
plants that result from one infected plant introduced into a sus-
ceptible population. When R0 < 1, the disease will not persist;
conversely, the disease persists if R0 > 1 (7). Thus, this funda-
mental term is also critical in determining if ‘invasion’ of the dis-
ease can occur, that is, if an introduction of a diseased plant into a
population results in an epidemic. If R0 < 1, each diseased plant
does not ‘replace itself’ with another diseased plant, and an epi-
demic does not occur. More precisely, when R0 < 1, the fraction of
infectious plants in the diseased population (s/[l + s + r]) de-
creases to 0 over time. If R0 > 1, each diseased plant results in
more than one new diseased plant (when the population of
plants is susceptible).

The equation for R0 based on equations 8 and 9 (or 10) is given by

( )R0 = 



 ′ ′








 ′ ′P

K

ab

k
k

φ
τ

η
2

3
2 (11)

in which τ′ = τ + α(1 – q), k3′ = k3 + β, η′ = η/(α + η), and k2′ =
k2/(k2 + β). Here, τ′ and k3′ are the inverses of the mean times (in a
population with mortality) that an infective insect stays in the in-
fective state and the plant stays in the infectious state, respectively.
k2′ is the probability of an infected plant becoming infectious,
which is virtually 1 for low natural mortality values (small β); η′
is the probability of an insect that had acquired the virus becoming
infective, which is 1 (or nearly so) for all transmission classes ex-
cept, possibly, the propagative one at large α. For nonpersistent
viruses, abφ2 in equation 11 is related to the concept of vector
propensity proposed by Irwin and Ruesink (14).

Example model epidemics. Use of the model is demonstrated
in Figure 4 for the propagative transmission class. Numerical so-
lutions here (and later), unless explicitly specified otherwise, are
based on the parameter values in Table 1 for the corresponding
transmission class and on the nominal values in Table 2 for other
parameters and initial conditions. Mathcad version 8 (MathSoft,
Inc., Cambridge, MA) was used for all numerical integrations. The
Bulirsch-Stoer method was utilized to numerically solve the dif-
ferential equations. The left column of subfigures shows the results

Fig. 4. Example numerical solutions to the vector-virus model of equations 8 and 9 for a fixed population size of the insect population with a propagative-per-
sistent virus (first two columns). For comparison, numerical solutions to equations 4 and 6 for a variable insect population size (υ[t] not equal to α · [X + Y + Z])
and a propagative-persistent virus are shown (last column). A to C, Proportion of plants in the healthy (susceptible, virus-free; h), latently infected (l), infectious
(s), and removed (r) categories. D to F, Number of insects per plant that are in the latent (y) category or are infective (z). G to I, Phase-trajectory plots of infec-
tious plants in relation to infective insects. J to L, Proportion of plants that are diseased (d = l + s + r; solid lines) on the left-hand axis and the logit of d on the
right-hand axis (long dashed lines).
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based on equations 8 and 9 for fixed P/K and a plant mortality
(and replanting) rate of β = 0.01/day. The parameter conditions cor-
respond to an R0 of 3.8 (equation 11); that is, each diseased plant
produces, on average, 3.8 new diseased plants in a population of
susceptible individuals. The healthy plant population declines, ini-
tially, in a negative exponential or reverse-sigmoidal fashion as the
other disease categories increase (Fig. 4A). Eventually, a minimum
value of h is reached and a very slight increase then occurs be-
cause of the continuing introduction of new healthy plants (because
β > 0/day). Both latent and infectious plant disease (l and s, re-
spectively) increase to maxima around day 100 to 110 and then
decline. Removed disease (r) increases to a maximum of around
0.7. Because R0 > 1, all four plant variables in Figure 4A ap-
proach nonzero equilibria at large times, meaning that the disease
persists in this system (Appendix) (18).

Total disease incidence (d = 1 – h = l + s + r) increases in this
epidemic to around day 150 and then declines somewhat (Fig. 4J).
The value of d fluctuates around an equilibrium (d*) of 0.71 at
large times (equations A3 and A4). We have found that a general
analytical expression for the disease equilibrium value in terms of
R0 can be given as

( )d* ≤ − −
1

1
R0 (12)

The equality is approached as β goes to 0 (e.g., β ¹ 0.001/day).
However, even with β = 0.01/day, 1 – (R0)–1 gives a predicted d*
of 0.73 with this example (Fig. 4J), relatively close to the exact
model value of 0.71 obtained from equation A4. The logit of d
(logit[d]) is also shown in Figure 4J; this variable increases in a
mostly linear manner with t up to day 150, indicating that disease
progress was initially well described as an exponential and then a
logistic process; closer to the d*, the logistic nature of the epi-
demic clearly breaks down.

As the number of healthy plants declines (or d increases), both
the number of latent (y) and infective (z) insects per plant increase
until around day 125 and then decline (Fig. 4D). Because of fixed
P, virus-free insects are determined from P/K – y – z. Both y and z
approached nonzero equilibria (equation A1 for z*). In this example,
the maxima and equilibria for y and z are considerably less than
the fixed insect density of four insects per plant (P/K). The change
in healthy plants and virus-free insects is driven by infectious plants
(s) and infective insects (z), as indicated by the first lines of equa-
tions 8 and 9; thus, it is informative to consider the phase plot of s
and z (Fig. 4G), as done commonly in population dynamic mod-
eling (26). In this example epidemic, s and z increase concurrently
until z is about 0.22, both then decline until z is about 0.1 and then
there is an increase again. A simulation with much longer t indi-
cates that this trajectory quickly approaches the equilibrium val-
ues for these two variables (L. V. Madden, unpublished data).

The central column of Figure 4 corresponds to equations 8 and
9, with the same parameters and initial conditions as the left-hand
column, but with β = 0/day, indicating that plants do not die (or
are replanted) during the epidemic. For this epidemic, R0 = 4.4
(equation 11). For the first 90 days of the epidemic, the change in
the four plant categories (Fig. 4B), as well as the insect categories
(Fig. 4E), was nearly the same as when β = 0.01/day (Fig. 4A and
D). A plot of d versus t was also sigmoidal.

Because of the lack of replanting, there are no nonzero equilib-
ria, and h continues to decrease (and d increase) at large times as s
and z go to 0 (Fig. 4H and K). However, h does not reach 0, or,
equivalently, d does not reach 1 at very large times. This is be-
cause the fraction of diseased plants that are removed or postin-
fectious (r/d) goes to 1 before h reaches 0; in other words, there
can be no further increase in d if all diseased plants are postinfec-
tious (15). In general, we have found that the asymptotic value of
d (d∞) lies between 1 – (R0)–1 and 1. For a wide range of popula-
tion-dynamic compartmental models (19) and for differential-delay

models (16) with no mortality or regrowth of the host, the asymp-
totic result for d is of the general form

( )d d e d
∞

−≈ − − ∞1 1 0
R0 (13)

The asymptotic value of d for the example in the center column of
Figure 4 is 0.978 (Fig. 4K), which agrees fairly well with the ap-
proximation of 0.988 obtained with equation 13. However, we
have not yet determined the exact expression for the relation be-
tween d∞ and R0 when β = 0/day in the model.

The third column of Figure 4 corresponds to the more general
model that includes population growth of the vectors and explicit
immigration and emigration (equations 4 and 6). Here, parameters
are K = 1,000, P0 = 2,000 (giving an initial condition of P0 

/K = 2 in-
sects per plant), α = 0.1/day, IX(t) = 250 insects per day (or 0.25 per
plant per day), IY(t) = IZ(t) = 0, EX = EY = EZ = 0.04/day, and β =
0.01/day. The vector ‘birth’ term was specified as

( ) ( )υ t X Y Z
X Y Z= + + − + +





018 1
10 000

.
,

which is a logistic function with a maximum population size of
10,000 insects (or 10 per plant) and a fecundity rate of 0.18/day.
Note that this fecundity rate is coupled with a mortality rate (α) of
0.1/day and some nonzero immigration and emigration rates in the
example. Other parameters are as listed in Tables 1 and 2. Nu-
merical results were divided by K (e.g., H/K = h) to give the same
scale as used in equations 8 and 9.

This third example was chosen to show the robustness of the
model by demonstrating that the epidemic outcome can be very
similar for a fixed insect population size (left-hand column) and a
variable population size. The behavior of the plant and insect cat-
egories over time are very similar between the left- and right-hand
columns of Figure 4 (Fig. 4A and C, and Fig. 4D and F), and the
phase plots of s and z show the same pattern (Fig. 4G and I). Alter-
ation of the parameters listed in the previous paragraph could make
the similarity even greater. Thus, the use of a fixed population size
for the insect population was not found to be overly restrictive in
interpreting epidemic results. The remainder of this paper deals with
fixed P as specified by equations 8 to 10.

Model with explicit terms for vector immigration and emi-
gration. The simplified plant virus epidemic model of equations 8
and 9 can be expanded for vector immigration/emigration, while
maintaining a fixed P. One approach is to specify some additional
parameters (18). Let V represent the number of vectors that emi-
grate per time, which can take any value from 0 to ∞ per day. With
fixed P, the emigrating and dead vectors must be replaced by either
reproduction within the field (‘births’) or immigration. Thus, one
can equate the following two expressions.

( ) ( ) ( ) ( )[ ] ( )υ αt I t I t I t V X Y ZX Y Z+ + + = + ⋅ + +

We define θ1 as the fraction of virus-free insects (X category) in
the pool of immigrants and θ2 as the fraction of insects in the la-
tent (L) category in the pool of immigrants. We then let 1 – θ1 – θ2

be the fraction of the immigrant pool that is infective (Z category).
Furthermore, we let ψ be the fraction of dying and emigrating
(lost) insects replaced by reproduction inside the field. This means
that 1 – ψ is the fraction of dying and emigrating vectors replaced
by immigration.

For this model, equation 8 for the plant population is unchanged and
equation 9 is replaced, after extensive algebraic manipulation (18), by

( )dy

dt
as

P

K
y z
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y

V P
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in which all terms are as defined previously (Table 2). We call this
Model II. As with Model I, elimination of one of the vector equa-
tions is possible for the nonpersistent and semipersistent classes,
because there are no insects in the latent category (1/η = 0 days).
The equation for infective insects becomes

( )( )dz

dt
as

P

K
z q

V

P

V

P
q z

V P

K
= −



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− + − + −



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+ − − +



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φ τ α αψ ψ ψ θ α
1 1 1 (15)

For these two classes, θ2 = 0, by definition. Because q = 0 for the
nonpersistent and semipersistent classes, multiplication terms
involving q can also be removed from equation 15.

Using these new parameters and equations 8 and 14 (or 15), a
wide range of epidemic conditions can be specified. For instance, the
simplified model without explicit emigration/immigration (Model
I) is obtained when V = 0/day (no emigration) and ψ = 1 (all dying
insects replaced by within-field reproduction). When V = 0 and ψ <
1, there is no emigration, but some of the dead insects are replaced
by immigrants. The extreme case of no colonization of the plant
crop by vectors can be specified with V = P and ψ = 0 (all vectors
emigrate per time period, and no ‘births’ within the field). Here,
all emigrants are replaced by immigrants, and the θ terms specify
the immigrants that are in the X, Y, and Z categories. This case can
be important for nonpersistent viruses (14).

Equations for equilibrium or steady states based on equations 8
and 14 (or 15) can be obtained, but are very complicated (Appen-
dix) (18). If ψ < 1—so that some of the insects lost to death and
emigration (if V > 0) are replaced by immigrants—and either θ2 or
1 – θ1 – θ2 is greater than 0, then there is no threshold for disease
to persist and, thus, no definable R0. This is because there will
always be an influx of some new viruliferous insects into the
system, and infections of plants will result not just from infected
plants in the field (through the activity of local vectors), but also
from viruliferous individuals originating outside the field (through
the activity of immigrant vectors). Thus, early in the epidemic (at
small t), disease increase is a mixture of exponential and linear
processes. However, when θ1 = 1 (meaning that all immigrants are
virus free), there is a threshold for persistence, and R0 is defined
as in equation 11, except that τ′ and η′ are given by the more com-
plicated expressions

( )′ = + +





−τ τ α ψV

P
q1

and

′ =
+ +

η η

α η V

P

Numerical solutions to equations 8 and 14 (or 15) over a wide range
of time values have not been previously determined; the relationship
between model parameters and d* has also not been ascertained.

Numerical methods. Model I. The effects of selected insect
and virus parameters on plant virus epidemics were determined
for each of the transmission classes for Model I (no explicit vector
migration). Unless stated otherwise, the values of the transmission
parameters given in Table 1 were used for the corresponding trans-
mission class, together with the nominal values of the other param-
eters and the initial level of the variables (e.g., L0 for initial la-
tently infected plants) given in Table 2.

Initially, the vector parameters that are unrelated to plant vi-
ruses (at least in the model) were evaluated, namely, P/K, α, and φ
(Table 2). These terms reflect vector density, mortality rate (and,
hence, mean vector lifetimes because of the fixed P), and mobil-
ity, respectively. The following values of P/K were tested: 0.05,
0.1, 0.2, 0.4, 0.8, 1.6, 3.2, and 6.4 vectors per plant. Three values
of α were evaluated, 0, 0.2, and 0.4/day, and five values of φ were
tested, 0.5, 0.75, 1, 2, and 3 plants per day. For the evaluations of
α and φ, the nominal values of P/K were selected for the four
transmission classes based on the results from the initial evalua-

tion of P/K. That is, values of P/K were chosen so that R0 was the
same (= 3.8) for the four transmission classes at the nominal val-
ues of α and φ.

The virus-related parameters k1, λ, k2, and k3 (Table 2) were then
evaluated for their influences on epidemics. These terms reflect the
rates at which inoculation and acquisition occur and the rates at
which latently infected plants become infectious and then become
postinfectious. Because both k1 and λ are based on the inherent
properties of viruses in each transmission class, they cannot be
varied as widely as some other terms without ‘giving’ a virus in
one class the properties of another class. Thus, these terms were
varied by ±50% of the nominal values in Table 1. For the cases
shown here, k2 and k3 were also varied by ±50%. The other virus
parameters of η and τ were not tested, since there is less oppor-
tunity to alter these properties through management unless one could
replace a wild-type virus with a less aggressive isolate in nature.

For selected numerical solutions of equations 8 and 9 (or 10) with
the parameter values described above, the exponential rate of in-
crease in d (rE) during the early part of the epidemics (when d ¹ 0.05)
was calculated. A plot of ln(d) versus t was constructed for each
model epidemic, which was found to be a straight line for small
values of t (L. V. Madden, unpublished data). An estimate of rE

was obtained as the estimated slope of ln(d) versus t for this linear
portion of the graph, using ordinary least-squares regression.

For some population-dynamic processes, it is known that there
is an approximate relationship between rE and R0 (at small R0 [5]
and d) of the form

( )rE ⋅ ≈µ ln R0 (16)

in which µ is the average age of infectivity of an individual (in-
fected plant or viruliferous insect). For the numerical results, it
was determined if equation 16 could describe the plant virus epi-
demic data when µ (5) was given by
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The first two terms within the brackets of equation 17 represent
the mean for the plant population, and the last two terms represent
the mean for the insect population.

Model II. The model with fixed P (or P/K) and explicit vector
immigration/emigration (Model II: equations 8 and 14 [or 15])
was used to determine the effects of vector migration on plant vi-
rus epidemics for the four transmission classes. The nominal values
of the parameters from the nonmigration model (Model I: equa-
tions 8 and 9) were used, together with the value of P/K that pro-
duced an R0 of 3.8 with Model I. Selected values of vector emi-
gration rate (V/P), fraction of lost vectors (by death and emigration)
replaced within the field by reproduction (ψ), and fraction of infec-
tive (1 – θ1 – θ2) immigrants were then tested for their effects on
epidemics. In all cases, θ2 = 0 (no immigrant vectors in the latent
state) was used in the model, for simplification of presentation.

In the first evaluation, V/P values of 0.5 and 1.0/day were con-
sidered at two extreme values of 1 – θ1 – θ2 (Table 3). When V/P =
1/day, all vectors in the system leave the system daily. For V/P =
1/day, we considered that all emigrants and insect deaths were re-
placed by immigrants (no ‘births’; ψ = 0 or 1 – ψ = 1); for V/P =
0.5/day, we specified that half of the emigrants and deaths were
replaced by immigrants and the rest replaced by within-field re-
production (ψ = 0.5). For each of the two V/P values tested, we
considered that all immigrants were either infective (1 – θ1 – θ2 =
1) or virus free (θ1 = 1, or 1 – θ1 – θ2 = 0).

In the second evaluation of epidemics for Model II, we fixed θ1

at 0.9 (1 – θ1 – θ2 = 0.1). Thus, 10% of the immigrating insects
were infective in all cases, rather than the extreme cases of 0 and
100% in the evaluation in the previous paragraph. We considered
the effects of emigration rate, V/P, ranging from 0 to 1 per day
(Table 3), with all emigrating and dying insects replaced by immi-
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grants (ψ = 0). An additional treatment consisted of an intermedi-
ate V/P and with all lost insects replaced by ‘births’ instead of
immigration (ψ = 1).

RESULTS

Vector density. The propagative transmission class differed from
the others in terms of the effects of vector density (P/K) on plant
virus epidemics (Fig. 5). In general, the semipersistent and circula-
tive viruses had the highest disease incidence (and highest R0) at
any given value of P/K, followed by the nonpersistent and then by
the propagative viruses. Although the nonpersistent class is charac-
terized by the highest rates of virus inoculation (k1) and acquisi-
tion (λ) (Table 1) (25), the inoculation (b) and acquisition (a) prob-
abilities per plant visit are ~1 for this as well as the semipersistent
class (equations 3 and 5) (Fig. 3). Thus, the very short infectious
period (1/τ) for the nonpersistent class results in lower disease levels
than those for the semipersistent class. Likewise, although a and b
are lower for the circulative compared with the nonpersistent class,
the much longer infectious period for the former results in close to
the same disease values as the semipersistent class. On the other
hand, the even longer infectious period for the propagative class
does not compensate for the low a and b values, and this class has
the lowest levels of disease incidence at the tested P/K values.

Numerical results for steady-state disease incidence (d*) agreed
with the predicted values from equation A4 and were well ap-
proximated by 1 – (R0)–1 (equation 12). Disease incidence exceeded
0.5 with a P/K of only 0.1 for the semipersistent virus class (at
nominal values of the other parameters); to exceed this incidence
value with a propagative virus, a P/K between 1.6 and 3.2 was re-
quired (Fig. 5). Values of P/K that resulted in an R0 (equation 11)
of 1—the threshold for disease persistence—were 0.31, 0.044,
0.072, and 1.07 vectors per plant for nonpersistent, semipersistent,
circulative, and propagative classes (at the nominal values of the
other parameters [Tables 1 and 2]), respectively. Model epidemics
were very similar in shape to numerous published disease progress
curves for perennial and annual crops (4,22,30,35–37).

The effects of P/K can also be seen in Figure 6A, in which dis-
ease incidence (d) versus time (t) is shown for epidemics with an
R0 of 3.8. Values of P/K ranging from 0.2 to 4 vectors per plant
were required to achieve this R0. At large times, values of d for all
transmission classes approached a steady state of ~0.71 because of
the equal R0 values. However, Figure 6A also shows that the epi-
demic behavior in the short term (low to intermediate t)—the tran-
sient behavior—was not necessarily the same for the different
classes. For instance, at t ≈ 75 days, the nonpersistent virus class
had the highest d, the propagative virus class had the lowest, and
the other two virus classes were intermediate in terms of d. This

TABLE 3. Tested values of vector emigration rate (V/P), fraction of virus-free
(θ1) and infective (1 – θ1 – θ2) insects in the immigrant pool, and fraction of
lost vectors (from mortality and emigration) replaced by within-field reproduc-
tion (ψ) for the explicit vector migration model (Model II; equations 8 and
14 [or 15])a

Case labelb V/P θ1 1 – θ1 – θ2 ψ

Evaluation 1
i 0 + + 1
ii 1 0 1 0
iii 1 1 0 0
iv 0.5 0 1 0.5
v 0.5 1 0 0.5

Evaluation 2
0/1 0 + + 1
0 0 0.9 0.1 0
0.125 0.125 0.9 0.1 0
0.25 0.25 0.9 0.1 0
0.25/1 0.25 0.9 0.1 1
0.5 0.50 0.9 0.1 0
1 1.0 0.9 0.1 0

a Table 2 and text has a fuller description and units of parameters, and Table
1 has nominal parameter values with the four transmission classes. In all
cases, the fraction of immigrants in the latent state (θ2) was 0.

b Disease progress curves are shown in Figures 12 and 13. Case i and 0/1 are
equivalent to the model without explicit migration (Model I; equations 8
and 9 [or 10]).

Fig. 5. Plant disease incidence (d) versus time (t) for the four virus transmission classes based on the parameters and initial conditions in Tables 1 and 2 at eight
values of vector density (P/K), ranging from 0.05 to 6.4 vectors per plant. Results are based on equations 8 and 9 (or 10). Values of P/K are shown on the sub-
figure for circulative-persistent transmission. The line symbols and ordering of values are the same in each subfigure. Values of R0 (equation 11) for the eight
levels of P/K (listed from lowest to highest) are 0.16, 0.33, 0.65, 1.3, 2.6, 5.2, 10.5, and 21.0 for the nonpersistent class; 1.2, 2.3, 4.6, 9.3, 18.5, 37.1, 74.1, and
148.3 for the semipersistent class; 0.71, 1.4, 2.8, 5.6, 11.3, 22.6, 45.1, and 90.2 for the circulative-persistent class; and 0.05, 0.09, 0.19, 0.38, 0.75, 1.5, 3.0, and
6.0 for the propagative-persistent class.
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was primarily due to the differences in the length of the latent
(1/η) and infectious (1/τ) periods in the vector (Table 1) and the
resulting µ (equation 17) among the four classes.

The change in infectious plant disease (s) and infective vectors
relative to the total vector population size (Z/P = z

 

/[P/K] =
[Z/K]/[P/K]) for the four disease progress curves in Figure 6A are
shown in Figure 6B and C. The steady-state values of s were about
0.07 (7% of the plants) for all classes, but values were different
among the four classes early in the epidemics. The time of maxi-
mum s generally was associated with the length of the latent
period in the vector (1/η), but not in a linear manner. The nonper-
sistent virus class had the highest value of s at the time of the
maximum, and the propagative class had the lowest (Fig. 6B). The
other classes were intermediate.

Steady-state and maximum values of the fraction of vectors that
are infective (Z/P) varied with the transmission class, even at the
same R0 (Fig. 6C). There were similar steady states for the non-
persistent and propagative classes, which were considerably be-
low the values for the other two classes. The maximum Z/P was
reached later for the propagative than for the nonpersistent class,
due to the long latent period in the vector for the former class. The
change in Z/P with time for the semipersistent and circulative
transmission classes was similar, except that the maximum was
higher for the semipersistent viruses.

Vector mortality. The values of insect density (P/K) that re-
sulted in R0 = 3.8 with nominal values of the other terms (Fig. 6)
were used for the evaluation of insect mortality or turnover rate
(α) and mobility (φ) on plant virus epidemics. Vector mortality/
turnover had a strong differential effect on epidemics for the four
transmission classes (Fig. 7). For instance, there was virtually no
effect of α on epidemics caused by nonpersistent viruses and a very
large effect of α on epidemics for the circulative and propagative
classes. The nonpersistent virus result is due to the short times
needed for an insect to acquire and transmit the virus (1/λ and
1/k1) relative to the life span of the insects, as well as the lack of
latent period (1/η = 0). That is, even if the individual vectors were
only present for a very short time (high α), there would still be
sufficient time for acquisition and transmission. There was vir-
tually no change in R0 with change in α for this class (Fig. 7).

The long times needed for an insect to acquire and transmit a
circulative or propagative virus and the long latent period in the
vector, especially for the latter class, are the reasons why these
transmission classes were sensitive to changes in α. R0 varied
greatly with change in α for these classes (Fig. 7). With a high α,
there is insufficient time for acquisition and transmission; how-
ever, with small α (long mean life span), the long acquisition and
inoculation times no longer were constraints. Note that α = 0/day
corresponds to the vectors living for the entire period of the epi-
demic, with no reproduction or deaths (analogous to the model in
literature citation 8). With this minimum value of α, disease inci-
dence reached higher levels with the propagative transmission
class than with the other classes in Figure 7. However, vector den-
sity (P/K) was different for the four classes in this comparison. At
α = 0/day and the same P/K for all classes (e.g., P/K = 0.3), dis-
ease incidence and R0 for the propagative class were lower than
for the circulative class, but still higher than for the nonpersistent
class (L. V. Madden, unpublished data).

Vector mobility. The number of plants visited per day (φ) also
had a large effect on epidemics (Fig. 8), but the sensitivity of the
four classes to changes in this parameter was different compared
with insect mortality/turnover (Fig. 7). In general, the nonpersis-
tent and semipersistent classes responded most to changes in φ,
followed by the circulative and then the propagative classes (Fig.
8). Because increasing the number of plant visits per day necessi-
tates that less time is available per visit to feed (and potentially
acquire or transmit the virus), T decreases with increasing φ (Table
2). With the very short acquisition and transmission times for non-
persistent and semipersistent viruses, a short feeding time per visit

is not a constraint (a and b [equations 3 and 5] are about 1 at all
the φ [and T] tested). Thus, increasing φ had a pronounced effect
on epidemics for these transmission classes.

With viruses requiring long periods for acquisition and inocula-
tion and a long latent period in the vector, the positive effects (in
terms of higher d) of increasing φ could be partially negated by the
decreased time (T) available for these processes at each plant visit.
For instance, with a propagative virus, a φ of 3 gives more oppor-
tunities for a viruliferous insect to transmit a virus to healthy plants,
but each opportunity has a lower probability of success, because b
decreases as φ increases. For the propagative class, in particular, a
and b both decrease substantially as φ increases. This resulted in a
virtually unchanged R0 with the parameters being used here (Fig.
8). However, there were some differences in d at intermediate
times (90 to 120 days).

Virus-plant interactions. The rate at which the virus passes
through the latent (k2) and infectious periods (k3) in the plant (Fig. 2)

Fig. 6. A, Plant disease incidence (d) versus time (t) for the four transmission
classes based on parameters and initial conditions in Tables 1 and 2, with
levels of vector density (P/K) selected to produce an R0 (equation 11) of 3.8
for each epidemic. Labels give the transmission class (Table 1) and the value
of P/K is in parentheses. B, Infectious plant disease (s) versus time for the
disease progress curves in A for the four transmission classes. C, Fraction of
the vectors that are infective (Z/P) for the disease progress curves in A for the
four transmission classes. µ of equation 17 equals 8.1, 9.1, 10.4, and 12.4 days
for the nonpersistent (NP), semipersistent (SP), circulative-persistent (CP),
and propagative-persistent (PP) classes, respectively.
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Fig. 7. Plant disease incidence (d) versus time (t) for the four virus transmission classes based on the parameters and initial conditions in Tables 1 and 2 at vec-
tor mortality/turnover rates (α) of 0, 0.2, and 0.4/day. Vector density (P/K) is 1.1, 0.2, 0.3, and 4.0 for the nonpersistent, semipersistent, circulative-persistent,
and propagative-persistent classes, respectively. Results are based on equations 8 and 9 (or 10). Values of α are shown next to the curves for some of the classes.
Values of R0 (equation 11) for the three α values (listed from lowest to highest α) are 4.1, 3.8, and 3.5 for the nonpersistent class; 6.9, 3.8, and 2.6 for the
semipersistent class; 22.8, 3.8, and 1.8 for the circulative-persistent class; and 207.1, 3.8, and 1.1 for the propagative-persistent class.

Fig. 8. Plant disease incidence (d) versus time (t) for the four virus transmission classes based on the parameters and initial conditions in Tables 1 and 2 at vector
mobility rates (φ) of 0.5, 0.75, 1, 2, and 3 plant visits per day. Vector density (P/K) is 1.1, 0.2, 0.3, and 4.0 for the nonpersistent, semipersistent, circulative-persistent,
and propagative-persistent classes, respectively. Results are based on equations 8 and 9 (or 10). Values of φ are shown next to the curves for some of the classes.
Values of R0 (equation 11) for the five φ values (listed from lowest to highest φ) are 0.94, 2.1, 3.8, 15.1, and 33.9 for the nonpersistent class; 0.95, 2.1, 3.8, 13.8, and
25.7 for the semipersistent class; 1.8, 2.9, 3.8, 5.9, and 6.9 for the circulative-persistent class; and 2.9, 3.8, 3.5, 4.4, and 4.2 for the propagative-persistent class.
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had about the same effect on epidemics for all four transmission
classes (L. V. Madden, unpublished data). This is demonstrated in
Figure 9A and B for the nonpersistent class. There was no long-
term (steady state) effect of k2 on disease incidence, as expected
from the small influence that k2 has on R0 (equation 11). However,
the latent period did have a transitional effect, as seen around t =
50 to 80 days in Figure 9A: increasing the length of the latent
period (decreasing k2) resulted in lower disease incidence during
this time period.

The infectious period in the plant had both long-term (steady
state) and short-term (transitional) effects on epidemics (Fig. 9B).
The steady-state results were expected based on the large effect of
k3 on R0 (equation 11). Increasing the length of the infectious pe-
riod (decreasing k3) resulted in a higher R0 and disease incidence.

There was a differential response of the four transmission classes
to change in the rate at which the virus is acquired (λ) and inocu-
lated (k1) or, equivalently, the mean time to acquire (1/λ) and trans-
mit the virus (1/k1). This is demonstrated for the nonpersistent and
circulative-persistent classes in Figure 9C and D. For the trans-
mission classes with short times to acquire and inoculate (nonper-
sistent [Fig. 9C] and semipersistent [data not shown]), change in
these parameters had no effect on disease progress. This is be-
cause a ±50% change in λ and k1 still resulted in values of a and b
(equations 3 and 5) of around 1 per plant visit. However, for the
transmission classes requiring long times for acquisition and inocu-
lation (the two persistent classes), a change in λ and k1 had a large
effect on a and b and the resulting epidemics. Increasing either or
both of these rate terms (decreasing the mean times to acquire or
transmit) resulted in a higher R0 and disease incidence (Fig. 9D).

The effects of a simultaneous change (±50% of the nominal val-
ues) in k1, λ, k2, and k3 on virus disease epidemics can be seen in
Figure 10. Here, a 50% increase in k1, λ, and k2 was coupled with
a 50% decrease in k3 (labeled ×1.5, and termed an increase in the
rates); conversely, a 50% decrease in k1, λ, and k2 was coupled
with a 50% increase in k3 (labeled ×0.5, and termed a decrease in
the rates). The two persistent classes were most affected by the
simultaneous change in these four parameters, with no disease
increase when the terms were reduced by 50% (giving an R0 of
less than 1) (Fig. 10). This can be attributed to the large effect that
the rate of inoculation/acquisition and also the length of the infec-
tious period have on disease progress for persistent viruses (Fig.
9D). However, changing the four parameters had only minor ef-
fects on the nonpersistent and semipersistent classes (Fig. 10). For
these two classes, results were primarily due to the influence of k3,
since the other parameters had little individual effects on epidem-
ics (Fig. 9A and B).

Exponential rate of disease increase. As exemplified in Fig-
ure 4J to L, there was a straight line between logit(d) and t in most
cases when t was not large. This indicated that disease increase
was approximately exponential at small d (4,5). There was, in fact, a
linear increase in ln(d) with t at small times for the Model I epi-
demics summarized in Figures 5 to 10 when R0 > 1 (L. V. Madden,
unpublished data). Estimates of the exponential rate parameter, rE,
ranged from 0.01 to 0.78/day for these cases. Using equation 16
and µ defined by equation 17, rE could be well predicted for val-
ues of R0 less than 15 (Fig. 11), although there was a slight over-
prediction by this equation.

Explicit vector migration. First evaluation. Vector immigra-
tion and emigration had a pronounced effect on the epidemics
(Model II: equations 8 and 14 [or 15]), but the effects varied with
transmission class (Fig. 12). In the first evaluation shown here, a
situation with high vector emigration (V/P = 0.5 or 1/day) (Table 3),
the fraction of infective insects in the immigration pool (1 – θ1 – θ2)
determined the epidemic outcome. For the circulative-persistent
and propagative-persistent transmission classes, there was no dis-
ease increase (R0 < 1) when all immigrants were virus free (1 – θ1 –
θ2 = 0 and θ2 = 0) (Fig. 12, cases iii and v). This is because there
was insufficient time for the immigrating insects to acquire or trans-

mit the virus before emigrating. However, when 1 – θ1 – θ2 equaled
0 for the nonpersistent class, there was virtually no effect on the
epidemics relative to the nominal situation of no vector migration
(Model I; case i). Because of the very high rates of acquisition and
inoculation, coupled with the lack of latent period in the vector
(1/η = 0), there was sufficient time for the entire transmission pro-
cess with nonpersistent viruses, even when there was no vector

Fig. 9. Plant disease incidence (d) versus time (t) for the nonpersistent and
circulative-persistent virus transmission classes based on the parameters and
initial conditions in Tables 1 and 2 with changes in A, k2 (inverse of mean
latent period in plant) for nonpersistent viruses; B, k3 (inverse of mean infec-
tious period in plant) for nonpersistent viruses; C, k1 and λ (rates of virus
inoculation and acquisition) for nonpersistent viruses; and D, k1 and λ for
circulative-persistent viruses. Values of the parameters are indicated on the
graphs. Values of R0 (equation 11) for the three cases in each subfigure (listed
from bottom to top curves) are A, 3.8, 3.8, and 3.8; B, 2.6, 3.8, and 6.8; C, 3.6,
3.8, and 3.8; and D, 1.5, 3.8, and 5.7. Vector density (P/K) is 1.1 and 0.3 for
the nonpersistent and circulative-persistent classes, respectively.
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colonization (when all vectors emigrated daily). The semipersistent
class was intermediate between the nonpersistent and the two per-
sistent classes in terms of the effects of virus-free immigrants on
disease progress. That is, disease incidence increased over time
(R0 > 1) when 1 – θ1 – θ2 equaled 0, but incidence was less than
the nominal situation with no vector migration.

Plant disease incidence approached 1 in the extreme situation of
all immigrants being infective (1 – θ1 – θ2 = 1), whether all (V/P =
1/day) or half (V/P = 0.5/day) of the vectors emigrated per day
(Fig. 12, cases ii and iv; Table 3). In these cases, R0 is not de-
fined, because θ1 < 1 (18). Transmission class had very little effect
on the results. This combination of parameter values essentially
created a simple-interest or monocyclic disease situation (4), es-
pecially for the two persistent classes. This is because an increase
in d was due to outside inoculum (infective immigrating vectors)
rather than to spread from plant to plant, since there was no time
for the latter. For this simple-interest process, increase in disease
is linear at small t.

Second evaluation. Figure 13 shows the results of the second
epidemic evaluation with Model II, in which the effects of a wide
range of V/P values on disease progress were determined when
10% of the immigrants were infective (1 – θ1 – θ2 = 0.1), rather
than with the extremes of 0 and 100% in Figure 12. There was a
much greater rate of disease development when lost insects (from
death and emigration) were replaced by immigrants than by ‘births.’
This can be seen by comparing two pairs of epidemics in Figure
13. The first pair is the standard no-explicit-migration case (Model
I: equivalent to V/P = 0/day and ψ = 1 [case label 0/1 in Table 3]),
and the case for V/P = 0/day and ψ = 0 (no emigration, but deaths
replaced solely by immigrants [case 0]). The other pair is the case
for V/P = 0.25/day and ψ = 1 (one-quarter of vectors emigrate
daily, all replaced by within-field reproduction, and, thus, no in-
troduction of virus into the field [case 0.25/1]) and the case for
V/P = 0.25/day and ψ = 0 (emigrants and deaths replaced solely

by immigrants [case 0.25]). The propagative-persistent class and,
to a lesser extent, the circulative-persistent class were especially
sensitive to within-field reproduction versus immigration (Fig. 13).
This is because the fraction of infective insects in the total popula-
tion (the variable Z/P) reached a higher steady state (Z*/P) (equa-
tion A5) when 10% of the new vectors (the immigrants) were al-
ready infective (e.g., case 0.25) compared with the situation in
which new vectors (from ‘births’) acquired the virus and became
infective very slowly (e.g., case 0.25/1). For example, Z*/P for the
circulative class equaled 0.14 for case 0.25 in Figure 13, but equaled
only 0.03 for case 0.25/1.

Epidemic behavior in relation to V/P varied with transmission
class when there was no reproduction in the field and immigrants
replaced lost insects exclusively (ψ = 0 [cases 0 to 1 in Table 3]).
Increasing V/P led to lower disease development for the semiper-
sistent and circulative classes (Fig. 13). This is because Z*/P (equa-
tion A5) without emigration was higher than the value of 1 – θ1 – θ2

used here (0.10). For instance, Z*/P equaled 0.21 for the circula-
tive transmission class at V/P = 0/day (case 0), which was roughly
double the value of 1 – θ1 – θ2. Thus, increasing emigration rate
(V/P) led to replacing more and more infective insects with virus-
free ones, diluting the infective individuals in the population, re-
sulting in a lower Z/P and, hence, d.

For the nonpersistent transmission class, the opposite result was
seen; that is, increasing V/P resulted in increasing the rate of dis-
ease development (Fig. 13). However, the reason is the same as for
the semipersistent and circulative classes: Z*/P without emigration,
but immigrants solely replacing dead insects, was low (Z*/P ≈
0.03 [case 0]) and less than the 1 – θ1 – θ2 parameter value used
here. Thus, as emigration rate (V/P) increased, the fraction of all
insects that were infective increased (from the local acquisition of
the virus and the increasing pool of infective immigrants), leading
to higher d. For instance, Z*/P ≈ 0.04 (equation A5) for V/P =
0.25/day with the nonpersistent class (case 0.25). Interestingly, for

Fig. 10. Plant disease incidence (d) versus time (t) for the four virus transmission classes based on the parameters and initial conditions in Tables 1 and 2 and
simultaneous changes in k1, λ, k2, and k3, corresponding to the inverses of the mean inoculation time, acquisition time, latent period (in plant), and infectious
period (in plant), respectively. Curve label ×1.5: k1, λ, and k2 increased by 50%, and k3 decreased by 50% over the nominal values. Curve label ×0.5: k1, λ, and
k2 decreased by 50%, and k3 increased by 50% over the nominal values. Unlabeled curves: nominal values of all parameters (Table 1). Vector density (P/K) is
1.1, 0.2, 0.3, and 4.0 for the nonpersistent, semipersistent, circulative-persistent, and propagative-persistent classes, respectively. Values of R0 (equation 11) for
the three curves in each subfigure (listed from bottom to top curve) are 2.5, 3.8, and 6.9 for the nonpersistent class; 2.3, 3.8, and 7.0 for the semipersistent class;
0.97, 3.8, and 10.5 for the circulative-persistent class; and 0.70, 3.8, and 13.6 for the propagative-persistent class.
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the propagative transmission class, there was no apparent effect of
different V/P values (at ψ = 0) on disease incidence (Fig. 13), partly
because 1 – θ1 – θ2 used here was about the same as the steady-
state Z/P value with no emigration (Z*/P ≈ 0.11 [case 0]).

One further way that vector migration can be assessed is by plot-
ting steady-state d values (d*) (equation A3) versus P/K for vari-
ous combinations of V/P and ψ (and the nominal values of all other
parameters). These relationships are shown in Figure 14 for four of
the cases in Figure 13, 0/1, 0, 0.25/1, and 0.25 (Table 3). Predic-
tions from equation A3 were in agreement with the numerical solu-
tions of equations 8 and 14 (or 15) at the values of P/K used in
Figure 13. When there was no introduction of infective insects
into a field, either because ψ = 1 or θ1 = 1 (the latter not consid-
ered here), all lost vectors were replaced by within-field repro-

duction (or virus-free immigrants), and d* declined to 0 as P/K
decreased. The P/K value at which d* was 0 corresponded to R0 =
1; d* was 0 at all lower P/K values. For the situations with immi-
grating infective insects (1 – θ1 – θ2 > 0), d* never reached 0 as
P/K decreased (Fig. 14), because there were always some infec-
tive insects being introduced.

These d* values in Figure 14 confirm the results in Figure 13.
That is, the propagative class was very sensitive to how lost in-
sects were replaced (‘births’ versus immigrants [e.g., case 0.25
versus 0.25/1]). Results similar to the propagative class can be
seen for the other transmission classes only at low P/K (with exact
values dependent on class); at high P/K, however, d* values were
similar for within-field reproduction and immigration situations,
primarily because d* was close to 1 for all classes at high P/K.
When there were no within-field reproduction (case 0 versus 0.25),
there were only small differences in d* at most P/K values, although
the transitional values of d could be farther apart (Fig. 13). The
rank ordering of d* for cases 0 and 0.25 depended on the value of
Z*/P relative to 1 – θ1 – θ2, as shown for the examples in Figure 13.

DISCUSSION

Modeling of plant virus epidemics. The continuous-time, de-
terministic, and compartmental model of Jeger et al. (18) was suc-
cessfully used here to evaluate theoretically the effects of trans-
mission class on plant disease epidemics. The model can be written
succinctly as a set of linked differential equations with parameters
that have direct physical or biological meaning. With additional—
although not required—assumptions about the (fixed) size of the
insect population, it was possible to determine analytical results
for steady-state values of disease incidence as a function of model
parameters (Appendix). We expanded on previous work (18) by
determining numerical solutions for a wide range of model param-
eters and showing the effects of parameters on both transitional
and steady-state levels of disease for situations with and without

Fig. 12. Plant disease incidence (d) versus time (t) for the four virus transmission classes based on the model for explicit vector migration (Model II: equations 8
and 14 [or 15]) with the parameters and initial conditions in Tables 1 and 2 at five combinations of vector emigration rate relative to the total insect population
(V/P), the fraction of immigrants that are infective (1 – θ1 – θ2), and the proportion of lost insects (from death and emigration) that are replaced by ‘births’ (ψ).
Curve labels i to v correspond to parameter values in Table 3 for Evaluation 1. Vector density (P/K) is 1.1, 0.2, 0.3, and 4.0 for the nonpersistent, semipersistent,
circulative-persistent, and propagative-persistent classes, respectively. R0 (equation 11) is undefined for Model II when θ1 < 1.

Fig. 11. Relationship between the basic reproductive number (R0; equation 11),
mean age of infectivity (µ; equation 17), and exponential rate of disease in-
crease at small values of time (t) for epidemics in Figures 5, 7, 8, 9, and 10 in
which R0 > 1. Straight line is the prediction from equation 16.
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vector migration. Numerical solutions, with parameter values in
Tables 1 and 2, yielded disease progress curves (Figs. 5 to 13) that
are typical of many published epidemic data sets (4,22,30,35–37).

Although other continuous-time compartmental models have been
developed for virus diseases (6,13,23,27), these either have not been
formulated generally enough to encompass the full range of vector-
virus interactions characterizing nonpersistent, semipersistent, circu-
lative-persistent, and propagative-persistent transmission classes
(28) or all four plant infection categories (H, L, S, and R) (Fig. 2)
and three vector-virus categories (X, Y, and Z) were not consid-
ered. The objectives of these cited studies did not focus on the com-
parison of transmission classes, so such generalizations were un-
necessary. Ferriss and Berger (8) did focus on a comparison of
transmission classes in an innovative study by using a stochastic
spatial-lattice discrete-time simulation model. Several other simula-
tion and discrete-time models have been developed for specific
virus diseases, with varying degree of detail, depending on the
research objectives (9,11,33). In general, these latter simulation
models were used for very specific and detailed descriptions of a
particular system. In the classification system of May (26), these
would be labeled as tactical models. The model used in this paper,
however, would be classified as strategic in the May framework,
because we used it to “provide a conceptual framework for the
discussion of broad classes of phenomena” and not to describe
one particular plant pathosystem in detail (26). The Ferriss and
Berger model (2,8) could also be considered strategic, since it did
not focus on a particular disease. However, their simulation ap-
proach does not allow for easy representation in equation format,
making it more difficult to explore the general properties of the
system of interest. For instance, although computer simulation
makes it relatively easy to generate population growth curves in
relation to many driving variables and parameters (9,11,33), this
approach rarely leads to the generic determination of conditions
required for disease invasion (establishment) and persistence, as
well as the steady-state and asymptotic values of disease (17). By

basing the model in the current study on a relatively small number
of (linked) equations, we have shown that steady-state values of
disease incidence (and other variables) can be expressed in terms
of model parameters (Appendix) (18) or the basic reproductive
number (R0) (equation 11). Predictions of steady-state values of
disease incidence, based on the equations derived by Jeger et al.
(18), were found here to agree well with numerical solutions to
the equations (equations 8 and 9 [or 10] for Model I and equations
8 and 14 [or 15] for Model II). Because of the complexity of the
general model, however, transient behavior of the epidemics could
generally only be assessed with numerical methods, although at
small t, disease incidence could be approximated by an exponen-
tial equation for Model I (Fig. 11).

The nonpersistent viruses are different from the other viruses,
especially the persistent ones, because of the very short times for
acquisition and inoculation and the short latent and infectious pe-
riods in the vector (Table 1). In fact, the model developed here can
be further simplified, as an approximation, if one assumes that
both η and τ are infinite, meaning that the latent and infectious
periods are 0. In the limit, one obtains the following equation for
infective vectors if one holds aφ/τ fixed (= σ).

z
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=
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


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+

σ
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(18)

One can substitute equation 18 for z in equation 8, thus eliminat-
ing all differential equations for the vector population. Based on this
equation, the number of infective vectors per host plant is directly
proportional to insect density (P/K) and related to infectious plants
(s) in a saturation-type curve manner (s/[1 + σs]). Use of this
approximation produces epidemic curves similar to those shown
in the graphs of this paper (L. V. Madden, unpublished data). Mod-
eling nonpersistent viruses in this way is analogous to the ap-
proaches taken by Madden et al. (23) and Marcus and Raccah (24)
for this virus class.

Fig. 13. Plant disease incidence (d) versus time (t) for the four virus transmission classes based on the model for explicit vector migration (Model II: equations 8
and 14 [or 15]) with the parameters and initial conditions in Tables 1 and 2 at combinations of vector emigration rate relative to the total insect population (V/P)
and the proportion of lost insects (from death and emigration) that are replaced by ‘births’ (ψ). Ten percent of the immigrants are infective (1 – θ1 – θ2 = 0.1).
Curve labels correspond to parameter values in Table 3 for Evaluation 2. A single-number case label represents V/P with ψ = 0; a two-number case label repre-
sents V/P and ψ, when ψ = 1. Because of the overlap of curves, not all curves are labeled on all graphs. Vector density (P/K) is 1.1, 0.2, 0.3, and 4.0 for the
nonpersistent, semipersistent, circulative-persistent, and propagative-persistent classes, respectively. R0 (equation 11) is undefined for Model II when θ1 < 1.
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Transmission classes and disease management. With the sup-
position that the parameter values in Table 1 were characteristic
for the four transmission classes, it was found that these classes
varied greatly in their epidemic behavior and in their sensitivity to
changes in model parameters. For instance, two or three of the trans-
mission classes could be easily identified based on epidemic re-
sponse to vector density (P/K) alone (Figs. 5 and 6). Although dis-
ease incidence increased with P/K for all classes, very high values
of P/K were required for the propagative-persistent viruses to ex-
hibit steady-state and transient values of d similar to those found
for the semipersistent and circulative-persistent viruses with very
low P/K, all at nominal values of other parameters. The nonper-
sistent viruses were intermediate in terms of disease response to
changes in P/K. However, small changes in vector activity (φ) led
to very large changes in d for the nonpersistent viruses, but large
changes in φ had only a small effect on the propagative viruses.
The other classes were intermediate in terms of response to φ (Fig.
8). For the propagative viruses, any increase in opportunity for
inoculation of plants (by feeding on more plants per day) is ne-
gated by the decreasing probability of inoculation per plant visit.
Conversely, changes in vector mortality (α)—or mean lifetime
(1/α)—had no effect on nonpersistent viruses, only a little effect
on semipersistent viruses, and a pronounced effect on the propa-
gative viruses (Fig. 7). This is because, with the long times to ac-
quire and inoculate (on average) coupled with the long latent period
in the vector, increasing the time vectors are in a field greatly in-
creases the probability of all of these events occurring in individ-
ual vectors for propagative viruses. With short times for all of
these processes with nonpersistent and semipersistent viruses (Table
1; Figs. 1 and 3), the probability of all of these events occurring is
high, even at large α. It should be pointed out that small α (large
1/α) here is analogous to the modeling situation of Ferriss and
Berger (8), in which they found high d with propagative viruses.

Virus disease management approaches that affect vectors di-
rectly (42), rather than the virus or vector-virus interaction, can be

assessed in terms of the parameters P/K, α, and φ. Based on model
results, reducing the number of vectors per plant (e.g., through the
use of insecticides, host resistance to the insect, and cultural prac-
tices) will have a large effect on propagative viruses and, to a
somewhat lesser extent, nonpersistent viruses (Fig. 5). However,
the reduction in vector density will have to be substantial to have
any noticeable effect on semipersistent and circulative viruses,
which may explain the difficulty in controlling epidemics of the
geminivirus African cassava mosaic virus in Africa (13). More-
over, reducing vector density will not be effective for nonpersis-
tent viruses if insect mobility (plants per day; φ) is high (Fig. 8). It
is known that many insecticides can actually increase mobility of
insects (at least temporarily), as individuals move from plant to
plant to escape the insecticide (or find a suitable host) (31,34).
Such an increase in mobility will not interfere with the control of
the propagative viruses (Fig. 8) because of reduced time per plant
visit for a vector to transmit, but will be an obstacle for control-
ling nonpersistent viruses. For the persistent viruses, especially
the propagative ones, reducing the lifetime of vectors (1/α) will be
a very efficient means of control, at any vector density (Fig. 7).
On the other hand, reducing the lifetime of vectors will have no
effect on nonpersistent viruses unless vector density is low—in
particular, killing the current vectors in a field will not be effective
if new vectors are entering the field.

Increasing the resistance of the plant to the virus (21,29,37) can
be quantified through the parameters for the rate at which the vi-
rus moves through the latent (k2) and infectious periods (k3) (4,6,
15), as well as for the acquisition (λ) and inoculation (k1) rates. Of
course, increasing resistance to plant feeding by the vector (inde-
pendent of the virus) could also affect λ and k1 (42). Changing k2

had no long-term effect on viruses in any of the transmission
classes, as quantified by steady-state (equations 12 and A3) and
asymptotic values of disease incidence (equation 13) (Fig. 9). This
was expected based on the minor role that k2 has in determining

Fig. 14. Steady-state (equilibrium) values of disease incidence (d*; equation A3 with z* determined with equation A5) in relation to vector density (P/K) for the
four virus transmission classes based on the model for explicit vector migration (Model II: equations 8 and 14 [or 15]) with parameters and initial conditions in
Tables 1 and 2 at four combinations of vector emigration rate relative to the total insect population (V/P) and the proportion of lost insects (from death and emi-
gration) that are replaced by within-field reproduction (‘births’; ψ). Ten percent of the immigrants are infective (1 – θ1 – θ2 = 0.1). Curve labels correspond to
parameter values in Table 3 for Evaluation 2.
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R0 (equation 11); in fact, many theoretical epidemiology studies
ignore the latent category to simplify the mathematics and focus
on steady-state values (1,10). However, k2 did have a moderate ef-
fect on transitional disease dynamics at small and moderate t, es-
pecially for those virus transmission classes with a short latent
and infectious period in the vector (e.g., nonpersistent viruses)
(Fig. 9A); that is, decreasing k2 (increasing the latent period in the
plant), which can be accomplished through resistance, reduced dis-
ease development early in the epidemic. This is consistent with
the epidemiological result that rE is inversely proportional to the
latent period (a component of µ [equation 17]) and directly pro-
portional to ln(R0) (equation 16) (5). In contrast to k2 results, de-
creasing the time that plants are infectious (increasing k3) had a
fairly large effect on reducing transitional and steady-state disease
values for all four transmission classes (Fig. 9).

Changing k1 and λ had a differential effect on the four transmis-
sion classes. In particular, reducing these two rates by 50% had
virtually no effect on the nonpersistent and semipersistent viruses
(Fig. 9). This is because, with the high nominal rates for these two
classes (Table 1), the probabilities of acquisition and inoculation
per plant visit (a and b [equations 3 and 5]) were about 1, even
with a large reduction in k1 and λ. Conversely, changing these rates
for the two persistent classes had a direct effect on disease de-
velopment (Figs. 9D and 10), because a and b are close to linearly
related to λ and k1 at these lower values. Thus, effective control of
nonpersistent viruses through resistance to acquisition or inocula-
tion will require a much greater percentage of reduction in the ac-
quisition/inoculation rates relative to the persistent classes.

Large differences could be seen among the four transmission
classes (Table 1) in terms of epidemic responses to the migration
parameters of emigration rate (V or V/P), fraction of lost vectors
(from emigration and death) that are replaced by immigrants (1 – ψ),
and fraction of the immigrants that are in the infective (1 – θ1 – θ2)
state (Model II). Results depended heavily on whether or not lost
insects were replaced solely by ‘births’ (within-field reproduction;
ψ = 1) or some immigrants (ψ < 1) and whether viruliferous in-
sects were in the immigrant pool (θ1 < 1, so that 1 – θ1 – θ2 > 0) or
not (θ1 = 1). For all transmission classes, disease development
was slower when lost insects were replaced exclusively by ‘births’
(ψ = 1) than by infective immigrants (ψ = 0) (Figs. 12 and 13).
The propagative viruses were very sensitive and the nonpersistent
viruses were only slightly sensitive to ‘births’ versus immigration
(in the situation with V/P > 0). Because of the short times to ac-
quire and inoculate, the nonpersistent viruses were little affected
by the source of vectors (inside or outside the field). When immi-
gration represented a substantial fraction of the new insects in a
field (ψ ≤ 0.5), epidemic results varied with 1 – θ1 – θ2. For in-
stance, disease development was reduced, possibly to 0, when all
immigrants were virus free (1 – θ1 – θ2 = 0) and increased to high
levels when immigrants were infective (1 – θ1 – θ2 = 1) (Fig. 12).
The two persistent classes were most sensitive to this, primarily
because of the long times needed for a new vector in a field to
acquire the virus and then inoculate a susceptible plant. Somewhat
surprisingly, change in V/P had only a small effect on the epi-
demics for any transmission class when immigrants (with 10%
being infective) replaced lost vectors (Fig. 13, cases 0 to 1). Re-
sults for different values of V/P depended more on the value of 1 –
θ1 – θ2 relative to the fraction of infective insects in the total vec-
tor population (Z/P) than on transmission class.

Because results were much more sensitive to ψ and 1 – θ1 – θ2

than to V/P, the former two can be considered in more detail in
terms of disease management. Obviously, when there are no im-
migrants (ψ = 1), management can focus on the other factors con-
sidered with Model I. In situations in which immigrants are an
important source of vectors in crop plants (ψ < 1), it is advanta-
geous to reduce 1 – θ1 – θ2 to as close to 0 as possible for all
transmission classes, but especially for the circulative viruses at

any vector density and the propagative viruses at high vector den-
sity (Fig. 12, cases iii and v). Values of 1 – θ1 – θ2 as high as 0.10
(Fig. 13) are still too large for effective control under the nominal
conditions here. In fact, any value of 1 – θ1 – θ2 > 0 will lead to
disease persistence (Fig. 14), but depending on the other condi-
tions (parameters), reducing 1 – θ1 – θ2 to close to 0—possibly by
eliminating infected plants in weeds and surrounding crops—should
be effective for maintaining disease at a low level. With nonper-
sistent viruses, however, such a reduction will be far less effective
if insect density in the field of interest is not low and no control of
the disease is done within the field, since insects can acquire and
then transmit viruses so quickly.

Synopsis. The theoretical research presented here elucidating
the effects of transmission class on plant disease epidemics can be
summarized through a consideration of a model epidemic. When
there is no vector migration or when the population of insects is
the same globally as locally (Model I), d increases exponentially
early in the transitional phase of an epidemic (when d ¹ 0.05) if
the net reproductive number (R0) (equation 11) is greater than 1.
As shown in Figure 11, the relative rate of increase in d at these
early times, rE, is directly related to R0 and the mean age when an
individual insect or plant is infectious, µ (equation 17). The rela-
tionship, although not exact, is well described by equation 16 at
low R0. Both µ and R0 are directly related to easily interpreted
parameters that characterize the transmission process, behavior of
the virus in the plant and insect, or vector population dynamics.
Thus, by using the simple exponential model d = d0 · exp(rEt) and
the relationship between rE, µ, and R0, one can approximately
assess the effects of the transmission process and disease control
strategies on epidemics without the use of complicated nonlinear
differential-equation models (equations 8 and 9 [or 10]).

At (much) longer time periods, d eventually reaches a steady
state (d*), defined by equation 12 (or equations A1 and A3), or
approaches an asymptotic upper limit (d∞), roughly approximated
by equation 13. Both of these terms are directly related to R0. The
expression 1 – (R0)–1 provides an especially useful term to char-
acterize long-term disease dynamics without the use of differential
equations, because it is the upper limit for d* (equation 12) when
plant host mortality and regrowth (β) is nonzero but low. When β =
0/day, a steady state cannot be achieved, but a final disease out-
come is achieved that we have found numerically to be in the in-
terval, 1 – (R0)–1 < d∞ < 1 (equation 13); d∞ quickly approaches 1
as R0 increases above 4.

Between the early exponential and later steady-state (or as-
ymptotic) stages, there is a period in which predictions of d are
only possible through numerical solutions of the differential equa-
tions (equations 8 and 9 [or 10]). Although, in some cases, espe-
cially when plant host and regrowth is 0, d increases in roughly a
logistic manner during part of this period, in most cases with β >
0/day, d somewhat overshoots its steady-state value during this
transitional stage (Fig. 6A), before eventually stabilizing at d*.

The situation is more complicated when the insect immigrants
are not in the same categories as the emigrants, such that explicit
terms for migration are needed (Model II). In general, the increase
in d early in the epidemic is a mixture of exponential increase
from the insects internal to the field and linear increase from im-
migrating viruliferous insects (when d ¹ 0.05). However, when the
immigrants are all virus free (θ1 = 1), R0 can still be defined and
the increase will be exponential. After the transitional stage of dis-
ease development, represented by numerical solutions to equations
8 and 14 (or 15), d reaches a steady-state value (d*) when β >
0/day, which is determined based on the same parameters that pre-
dict d* for Model I, plus the terms for insect emigration rate (V),
fraction of lost insects replaced by immigrants (1 – ψ), and virus
status of the immigrants (1 – θ1 – θ2). The d* values, determined
from equations A5 and A3, are lower than 1, and can be higher or
lower than those found with Model I (Figs. 12 to 14). Because of
the complicated nature of equations A5 and A3, little insight is
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obtainable into epidemic behavior in relation to transmission or
other characteristics for Model II without use of numerical results.
Numerical solutions for Model II epidemics, as well as for the
transitional phase of Model I epidemics, do considerably extend the
understanding we can have of the plant virus disease epidemic process.

APPENDIX

Model I. Based on equations 8 and 9, steady-state values of the
plant and insect population values can be derived (18). The steady-
state value of infective vectors (z), conditioned on β > 0/day, can
be written as
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in which the asterisk indicates the equilibrium value, and all other
terms are defined in Table 2. Equation A1 can also be written more
succinctly as
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and R0 is given by equation 11. Equation A2 clearly shows the
effect of R0 on steady-state values, in that z* is only greater than 0
if R0 > 1. The steady-state value of d (d*) is given by
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in which z* is determined from equation A1 when β > 0/day. Sub-
stitution of equation A1 for z* in equation A3 and algebraic ma-
nipulation results in the following simple expression for d*.
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At very small β, C1/C2 ≈ 0, resulting in 1 – (R0)–1 as an approxi-
mation for d* (equation 12). Values of l*, s*, and y* can be de-
termined from the equations by Jeger et al. (18), with a substituted
for λT, and b for k1T.

Model II. Equations for steady-state values of insect population
variables are much more complicated when there is explicit vector
immigration and emigration (equations 8 and 14 [or 15]). The
steady-state value of z when β > 0/day is one of two roots of a
quadratic equation, specifically
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in which C3 to C5 are functions of the model parameters. These
functions are
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Steady-state disease incidence (d*) is given by equation A3, but
with equation A5 substituted for z*. Other equations are given by
Jeger et al. (18).
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