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ABSTRACT

Madden, L. V., Jeger, M. J., and van den Bosch, F. 2000. A theoretical
assessment of the effects of vector-virus transmission mechanism on plant
virus disease epidemics. Phytopathology 90:576-594.

A continuous-time and deterministic model was used to characterize
plant virus disease epidemics in relation to virus transmission mechanism
and population dynamics of the insect vectors. The model can be written
as a set of linked differential equations for healthy (virus-free), latently
infected, infectious, and removed (postinfectious) plant categories, and
virus-free, latent, and infective insects, with parameters based on the trans-
mission classes, vector population dynamics, immigration/emigration rates,
and virus-plant interactions. The rate of change in diseased plantsis a func-
tion of the density of infective insects, the number of plants visited per
time, and the probability of transmitting the virus per plant visit. The rate
of change in infective insects is a function of the density of infectious
plants, the number of plants visited per time by an insect, and the prob-
ability of acquiring the virus per plant visit. Numerical solutions of the
differential equations were used to determine transitional and steady-state
levels of disease incidence (d*); d* was also determined directly from the
model parameters. Clear differences were found in disease development
among the four transmission classes. nonpersistently transmitted (stylet-

borne [NP]); semipersistently transmitted (foregut-borne [SP]); circula-
tive, persistently transmitted (CP); and propagative, persistently trans-
mitted (PP), with the highest disease incidence (d) for the SPand CP classes
relative to the others, especialy at low insect density when there was no
insect migration or when the vector status of emigrating insects was the
same as that of immigrating ones. The PP and CP viruses were most af-
fected by changes in vector longevity, rates of acquisition, and inocula-
tion of the virus by vectors, whereas the PP viruses were |east affected by
changes in insect mobility. When vector migration was explicitly consid-
ered, results depended on the fraction of infective insects in the immi-
gration pool and the fraction of dying and emigrating vectors replaced by
immigrants. The PP and CP viruses were most sensitive to changes in
these factors. Based on model parameters, the basic reproductive number
(Ro)—number of new infected plants resulting from an infected plant
introduced into a susceptible plant population—was derived for some cir-
cumstances and used to determine the steady-stete level of disease incid-
ence and an approximate exponentia rate of disease increase early in the
epidemic. Results can be used to evaluate disease management strategies.

Additional keywords: compartmental model, nonlinear model, strategic
modeling, theoretical epidemiology.

Viruses with insect and other arthropod vectors cause many eco-
nomically important plant diseases of both annual and perennia

be categorized as stylet-borne, foregut-borne, circulative, and propa-
gative. Combining these produces four classes: (i) nonpersistently

crops in tropical and temperate regions (37,39). Disease incidence
depends on many factors including the number and behavior of
vectors, the resistance of plants to the viruses and vectors, and the
virus transmission process (14,35,36). Transmission class is of fun-
damental importance for characterizing the relationship between a
plant virus and its (primarily homopteran) insect vector (25) and is
putatively a key factor in virus disease development under a given
set of environmental and host conditions (2). However, little effort
has been made in determining the influence of the insect-virus in-
teraction on the resulting epidemics in the general sense (8). Un-
derstanding this relationship could lead to improved selection of
management strategies for different virus diseases. We show in this
paper that nonlinear modeling is a useful way to understand the
linkages between transmission class and plant disease devel opment.
We follow Nault (28) and use a classification system that com-
bines the systems based on the persistence of the virus in the vec-
tor (40,41) and the mode (or mechanism) of transmission (20).
Persistence is defined in terms of the retention time of the plant
virusin its vector, and three categories have been designated: non-
persistent, semipersistent, and persistent. Mode of transmission can

transmitted, stylet-borne (‘nonpersistent’ [NP]); (i) semipersistently
transmitted, foregut-borne (‘semipersistent’ [SP)); (iii) circulative,
persistently transmitted (‘circulative-persistent’ or simply circula-
tive [CP]); and (iv) propagative, persistently transmitted (‘propa-
gative-persistent’ or simply propagative [PP]). For the propaga-
tive-persistent class, the virus multiplies in the insect vector as well
as in the plant host. Nault (28) provided a thorough synthesis of
the transmission processes and showed the value of these classes
for systematics and ecology.

It is well known that certain management tactics work best only
for viruses in some transmission classes (34,37). For instance, in-
secticide sprays often are not effective for nonpersistent viruses,
because the pesticide does not work fast enough to prevent virus
acquisition or inoculation (34,37). In fact, increased (but tempo-
rary) mobility of the vectors sprayed with insecticide may lead to
increased disease incidence. On the other hand, the propagative-per-
sistent viruses are more readily controlled with insecticides (31,34).
However, other than the insecticide tactic, there has been little
research on the relationship between transmission class and dis-
ease control, in particular, or disease dynamics, in general. There
are many ways of assessing the impact of virus transmission class
on epidemics and effectiveness of controls, ranging from field ex-
periments involving specific pathosystems to modeling of virus
disease dynamics in relation to transmission properties. An advan-
tage of the latter is that one can focus on consequences of differ-
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ent transmission classes for fixed conditions of vector dynamics
(independent of the plant virus) and host susceptibility.

Before 1998, only Ferriss and Berger (8) had explicitly focused
on the consequences of transmission class on resulting epidemics.
They used a discrete-time, stochastic simulation approach to model
the spread of hypothetical virus diseasesin a spatid lattice of plants.
Their excellent paper showed, among other things, that transmis-
sion class can have a large effect on disease development. Their
model was somewhat limited by lack of reproduction in the plant
and vector populations, fixed and equal number of vectors and virus
transmission probabilities for all transmission classes, and rela-
tively short time durations of the epidemics. Jeger et a. (18) re-
cently proposed a more general, deterministic, continuous-time pop-
ulation-dynamic model for plant virus diseases in relationship to
insect vector dynamics that is analogous to some models devel-
oped for human pathogens with vectors (such as malaria[32]), but
explicitly considers the characteristics of the four transmission
classes. Jeger et a. (18) determined equilibrium or steady-state
values of plant disease and insect populations in order to deter-
mine conditions that resulted in persistence of disease in the plant
population. Large differences in steady states were found between
the propagative viruses and the others for the situation with no
insect migration. Only limited numerical results were determined
for epidemic behavior over the full range of time values during an
epidemic, and numerical results and analyses of steady states were
not presented for the case of explicit insect migration.

The objective of this paper is to expand on the theoretical work
of Jeger et a. (18) to gain insight into how transmission class can
affect epidemics caused by plant viruses with arthropod vectors.
To accomplish this objective, we explore properties of the plant
virus disease model under a range of conditions involving either
no explicit vector migration or with vector immigration and emi-
gration. We use the results to evaluate the implications of trans-
mission class on some disease management strategies.

THEORY AND APPROACHES

Virus transmission. The four transmission classes can be dis-
tinguished by the (mean) times for virus acquisition, inoculation
(transmission), and latent period in the insect vector (28). Con-
sider the time linein Figure 1, in which T represents the time that

of insects (when there is, again, no mortality). Infective indicates
that the insect is capable of transmitting the virus to a healthy
(susceptible and virus-free) plant. Values afdan be as large as
the life of the insect to as small as an hour (or less). Once an in-
sect is no longer infective, it can reacquire the virus from an in-
fected plant. A vector is said to be viruliferous from the time it
acquires a virus until the virus is lost. The sum of and 11 is

often termed the virus retention time.

If an infective insect feeds on a virus-free plant (Fig. 1, the di-
agonal time lines intersecting the infectious period time line), it
transmits at a rate &, corresponding to a mean time of inocula-
tion of 1k; (when there is no mortality). An individual infective
insect can transmit a virus to more than one plant, given sufficient
time and access.

Times for acquisition, inoculation, and length of retention in the
vector are often determined for plant viruses (2,28). Many studies,
however, record the minimum times for a population of insects
rather than the mean or median (Discussion in literature citation
2). Because the minimum (threshold time) is heavily influenced
by the number of insects (and plants) tested, it is difficult to de-
termine exact values for the parameteks 1k, 1f, and 1k,. How-
ever, approximate order-of-magnitude values can be easily specified
based on a general assessment of the published values. Nault (28)
indicated that acquisition time is of the order of seconds to min-
utes, minutes to hours, hours to days, and hours to days for the
nonpersistent, semipersistent, circulative, and propagative transmis-
sion classes, respectively. Latent periods are essentially O for non-
and semipersistent viruses, and of the order of hours to days and
weeks for the circulative and propagative viruses, respectively.
Retention time (latent plus infectious period) is of the order of
minutes, hours to days, days to weeks, and weeks to months for
the four classes (28). These values are for normal conditions when
the vectors are feeding and moving among plants in the same field
or nearby fields. It is known that the retention time can be much
longer for the nonpersistent class when vectors are not ‘in contact’
with plants, such as when they are traveling in jet streams over large
distances (3).

Based on Nault (28) and Berger and Ferriss (2), we have
chosen nominal values for these parameters (Table 1). We
further assume here that times for acquisition and inoculation
are the same within each class, but these times can be (very)

an insect is ‘in contact’ with a plank.can be thought of as feed- different across classes. Values in Table 1 are given in units of
ing or probing time by an insect, but there is no assumption thaays, with correspondingours presented in parentheses for some

the vector is actually feeding (probing) throughout this time. If avery short times. Based on these parameter values, non- and
virus-free insect is placed on an infected and infectious (discusssemipersistent viruses are acquired and transmitted very quickly,

below) plant afl = 0, acquisition proceeds at a rateAqfunits of

with essentially no time lapse between acquisition and

per time), corresponding to a mean acquisition time in a popularoculation. Insects also quickly lose the ability to transmit the

tion of insects (if no mortality occurs) ofAXL(units of time [e.g.,

viruses in these two classes, such that reacquisition is needed

days]). The virus passes through the latent period in the vector at@ continued inoculations. Conversely, propagative and, to a
rate ofn, corresponding to a mean latent period (in a populationlesser extent, circulative viruses are acquired (and transmitted)
of 1/n. For some classesnlis 0. The insect vector then becomesslowly, with a substantial period of time between acquisition

infective (or inoculative) and passes through this infectious periodénd inoculation; however, the insect remains infective for a long

at a rate of, corresponding to a mean time of idr a population

>
Acquisition  Latent Period Infectious period Q@«@
period $
S §§
/ & /o°
1 L 1 \Q
0 T
/A I/n /T

Fig. 1. Time line of an insect vector feeding on a plant, starting at time (T) 0.
Virus acquisition occurs at a rate of A from a virus-infected (and infectious)
plant, the virus passes through the latent period in the vector at a rate of n,
and the virus passes through the infectious period in the vector at a rate of 1.
When feeding on a virus-free (healthy) plant, inoculation occurs at a rate of
k; (diagonal time lines show inoculations).

time.

TABLE 1. Relevant parameters for the four plant virus transmission classes:
nonpersistently transmitted, stylet-borne (NP); semipersistently transmitted,
foregut-borne (SP); circulative, persistently transmitted (CP); and propagative,
persistently transmitted (PP)

Time and other
parameters? NP SP CP PP

Acquisition (1/A) 0.021(0.5h) 0.083(2h) 0.5(12h) 2.0(48h)
Inoculation (1/k,) 0.021(0.5h) 0.083(2h) 05(12h) 2.0(48h)
Latent period (1/n) 0 0 1 20
Infectious period (1/1) 0.25 (6 h) 4 20 00
Viruliferous progeny (q) 0 0 0 05

a Parameters refer to the plant virus interaction with the insect vector. All
listed parameters are times, except for g, which is unitless. Units shown are
days (with hours in parentheses for some short times).
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A further characteristic that separates propagative from the other
classes is transovaria transmission of the virus from females to
progeny. For this class, afraction of the eggs laid (q) are infected
by the plant virus. For the other transmission classes, qis 0.

M odel. Plant population. The plant population consists of K in-
dividuals that are partitioned into four nonoverlapping compart-
ments (stages, categories, or states): healthy or susceptible (virus
free) (H), latently infected (L), infectious (S), and removed (R). H,
L, S and R represent the numbers of plants in each category (Fig.
2). The number of diseased individuals (D) isgivenby L + S+ R

ues of 1/ and 1t for the vector-virus interaction are not related to
the values of X and 1k; for the plant-virus interaction.

Plants die in the model in all categories at a raf (@er time),
independent of infection status in the model. To maintain a con-
stant plant population size, dead plants are replaced at the same
rate,3 (Fig. 2). This would be analogous to the replanting of dead
plants in an orchard or to the production of new plant units (e.g.,
tillering) as plants die. This rate can, of course, be O.

Plant infection and rate equations. Linked differential equations
were specified directly for the four plant categoridsl(, S and

or by K — H. When an individual plant becomes infected (dis-R) based on the specifications given here, rather than directly spec-
cussed below), it moves through the latent stage at a rdée of ifying an equation foD. This is the standard approach in medical
(units of per time [e.g., per day]) into the infectious stage, correepidemiology (1). An equation f@ can then be determined using

sponding to a mean latent period in a population kf (days)

algebra. The equation fét can be written generally as

when there is no mortality (Fig. 2). Latent indicates that the plant

is infected but that insect vectors are not yet able to acquire the
virus from the plant because sufficient virus multiplication and dt

intraplant spread has not yet occurred. For annual croigsisl/

generally at least 5 days for most viruses; mean latent periods ¢
be much longer for perennials. When a plant is infectious, a viru
free insect vector can acquire the virus, assuming that it fee

from an infectious plant for a sufficient period of time.

Infected plants lose infectiousness and proceed into the r

moved or postinfectious stage at a ratekpfunits of per time),
giving a mean infectious period ofklivhen there is no mortality

(Fig. 2). The removed state occurs because the virus titer beco

dH

—=f(H)-AH @

in which f(H) is a function for change in host population size in-
agpendent of disease, afds the so-called force of infection, the

%’robability per unit of time that a healthy (susceptible) plant be-

dmes infected (1). Based on the assumptions described in the pre-
vious paragraph, we siH) equal to3(K —H). To directly account
for insect transmission\ must be based on the number of infec-
tive insects Z) rather than on the number of infectious pla®s (

or number of diseased plani3){ as is commonly done for simpler

Mfiddels (4,6,23). We specify the following expressionNars

too low for acquisition or the diseased plant no longer is attractive
for insect feeding (Fig. 1 in literature citation 6). Values d§ 1/ A = ghZ/K %)

can be as long as the life of the plant or be relatively short. When i . )

a plant is removed, an insect can no longer acquire the virus frot Which@is a parameter for the number of plants visited per time
the infected plant. In the model, plants do not recover from infed?eriod (e.g., per day) by an insect, dni the probability of in-
tion; that is, removed plants do not become susceptible. The vAculating the plant per visit (a value between 0 and 1). Determi-

Vector Ey
I

X

N

H o Heglth_yor
[3/ / non-viruliferous
o L)
ob |, &0 N o7 oa
L \\\ // Latent
. 104
B /,’<\ / T
4 N
i k N l
N K p
EZ nfective
Y 7
\L k3 v(t)q
Removed

Fig. 2. Schematic of the plant-virus insect-vector model. Variables are in boxes, and parameters are listed next to the lines and arrows. Tables 1 and 2 have an
explanation of terms. For ease of presentation, full specification of model terms are not given. For instance, the insect emigration rate parameters (e.g., Ey) are
multiplied by the insect numbers in a given category (Ex - X), but the immigration rates (e.d[t]) are arbitrary functions of time. Equations 4 and 6 have de-
tails. Diagonal lines represent the ‘contact’ between infective insects and healthy plants, and between infectious plastéraadnsects.
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nation of Z is explained below. Plants become infected based on
the ‘contact’ between healthy plants)(and infective insect<Z],

mission classes (Fig. 1), when an insect acquires the plant virus,
the virus passes through the latent state at a rafeantl through

which is modeled as a product of these two terms and the ratiee infectious state (back to the virus-free state) at a rate of

constantp (Fig. 2).

(Table 1).

The value ofb can be calculated based on mean inoculation Population sizesX, Y, and Z) are affected by reproduction

times (1k,) (Fig. 1) as
b=1-ek" ©)

(‘birth’) and death. Except for propagative viruses (in witjch 0),

PTABL E 2. Variables and parameters in the plant virus-vector model

in whichT is the time of feeding per plant visit. Equation 3 can b
derived from the Poisson distribution. Using the values of thderm

Explanation (initial conditions or nominal values)

transmission class parameters (Table 1), predicted valuearef
shown in Figure 3. For small values lgf and T, equation 3 is T
approximately equal t& T, so thatgb in equation 2 id@T. @T K
can then be considered the fraction of each day that an insdct
feeds (or is ‘in contact’ with a plant). This was the formulation
used by Jeger et al. (18). However, we use equation 3 directly
the expression for the force of infection (equation 2) to avoid ob-
taining unrealistically high values of the prodkegT for some D

transmission classes. d
Using equation 2 for the force of infection, the linked differen-d
tial equations for the plant population are ©
A
dH ZH
— =p(K-H)-gb— P
dt B( ) @ K P/K
dL ZH Y
= =g="-(k, +B)L
dt K (k. +p) @ 5
as _ B zIP
.E_@L(@+@s ik
1
ﬁ =k,;S-BR 1k,
dt kg

The equation foR is redundant when the plant population size is[3
fixed R=K —[H +L +9), butis included here for completeness. 1/
Equation 4 is the mathematical equivalent of the left-hand coli/n
umn of Figure 2. The last term dH/dt and first term ofdL/dt
represent both the decline in the number of healthy plants a
increase in the number of diseased plants (which start as latently
infected individuals). Thé,L term indL/dt anddS/dt represents
the transition from the latent to infectious state; kkfe term in b
dSdt anddR/dt represents the transition from the infectious to re-
moved state. Thp terms represent the plant mortality and replant-@
ing rates. Specifically, the productsffvith L, S andR represent
mortality, whereas the product @fandH represents new growth. u(t)
Insect vector population. In addition to the infective stat&)
insects can be classified with respect to plant viruses as being virBg
free X) and in the latentY) state (Fig. 2), in whiclX, Y, andzZ
represent the numbers in each category (Fig. 2). Total insect popger-
lation size isP (P = X + Y + Z). As described above for the trans- Ez

Ix(t)
()
I(t)
_—NP q
c 1.00 ” pp— \
-8 I/ SP ,/
£ 0801y < —CP — v
[&] ., -
s} - N
£ 060 -
5 / Pt PP .
g 0w / '/I lation: b =1 - exp(-k,T, 1
= - ‘noculation: b=1- -
2 / . o .0 exPCkD) 0,
Y 0.20 s Acquisition: a=1 - exp(-AT)
<
0'00 1 L | | 1 J
0.00 0.50 1.00 1.50 2.00 2.50 3.00 o
Time (T; days) Ry
Fig. 3. Probahility of an insect acquiring a virus from a plant (a) or transmit- e
ting (inoculating) avirusto aplant (b) in relation to time of feeding (T) for non- u

persistent (NP), semipersistent (SP), circulative-persistent (CP), and propagative-

1-6,-6,

Time during an epidemic (0 co; nominal: 0 200 days)

Time feeding (probing) per plant visit (nominal: 0.5/¢)

Total plant population size (nominal: 1,000)

Number of latently infected plants (Lo = 0.002K); | = L/IK

Number of infectious plants (§ = 0); s= SK

Number of removed (postinfectious) plants (R, = 0); r = RIK

Number of healthy (susceptible and virus-free) plants (Ho = K — [Lg +
S +Ry); h=H/K

Diseased plantg =Ly + S+ Ry); d=D/K=1-h=| +s+r

Equilibrium (steady-state) value dfcorresponding to a dynamic
plant host§ > 0/day) (equation 12)

Asymptotic value ofl ast goes too, when there is no steady state
(becaus$ = O/day) (equation 13)

Force of infection (equation 2)

Number of insect vectors (nominal: depends on transmission class)

Insects density (per plant)

Number of insects in latent state (stage or categésy) 0.00%);
y=Y/IK

Number of infective insect&{ = 0);z=2Z/K

Fraction of infective insects in the vector population

Number of virus-free insectX{ =P — [Yy + Zg]); X = X/K

Time to inoculate a plant by an insect vettor

Latent period of virus in plant (nominal: 5 days)

Infectious period of virus in plant (nominal: 12.5 days)

Plant mortality and replanting (regrowth) rate (nominal: 0.01/day)

Plants visited per day by an insect (nominal: 1/day)

Time to acquire a plant virus by a veétor

Time for plant virus to move through latent state in the vector
(latent period)

Time for plant virus to move through infectious state in the vector
(infectious period)

Probability of acquisition of a plant virus from an infectious plant
by an insect per plant visit (equation 5)

Probability of virus inoculation of a plant by an infective insect per
plant visit (equation 3)

Insect population mortality rate in full (varial#®-model (equation 6);
or turnover rate (‘birth’ and death rate) in fixedviodel |
(equation 9) (nominal: 0.2/day)

Arbitrary total fecundity (‘birth’) rate of insect population (per day) for
within-field reproduction; for fixed® Model l:u(t) =a - X+Y +2)

Emigration rate for virus-free insects (nominal: 0/day) in the full
(variableP) model

Emigration rate for insects in latent state (nominal: 0/day)

Emigration rate for infective insects (nominal: O/day)

Immigration rate for virus-free insects (nominal: O/day)

Immigration rate for insects in latent state (nominal: O/day)

Immigration rate for infective insects (nominal: 0/day)

Probability of a vector offspring being viruliferéus

Vector emigration rate for Model Il (equation 14), total (and fixed)
number of vectors that emigrate per day (nominal: equivalent to
0/day for the no-explicit-migration Model 1)

Fraction of emigrating and dead vectors replaced by within-field
reproduction in Model Il (equation 14) (nominal: equivalent to 1
for Model I)

Fraction of immigrants that are virus free in Model Il (equation 14)
(nominal: not relevant for Model )

Fraction of immigrants in the latent state in Model Il (equation 14)
(nominal: not relevant for Model )

Fraction of immigrants that are infective in Model Il (equation 14)
(nominal: not relevant for Model )

a1 (derived parameter for the limit whgr= T = ») (equation 18);
applicable for nonpersistent viruses only

Basic reproductive number (equation 11)

Exponential rate of disease increase early in an epidemic; directly
relevant only for Model | (equation 16)

Mean age of a infectivity of an individual (plant or insect) (equation 17)

persistent (PP) classes, based on values of parametersin Table 1.

2 Table 1 has nominal values for the four transmission classes.
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all progeny of insects are virus free in the model, meaning that For convenience of interpretation, the variables in equations 4 and
only X increases due to reproduction for the other three transmis- 6 were scaled by dividing b, the total number of plants. The
sion classes. Total population fecundity (reproductive or ‘birth’) rateew variables are = H/K, | = L/K, s= 9K, r = RIK, x = X/K,y =

at timet is given by the general expressiaft). Whenq > 0, both  Y/K, andz = Z/K. With this scalingh+1+s+r =1, andd (=[L +

X andZ can increase due to reproduction, thus, the fecundity rat®8+ R]/K) is given by 1 -h andl + s +r. Also, X, y, andz represent

in the X state is reduced from the totst) to the numbers of insects per plant (density termsPaldE x +y + z
9 7z 0 Two forms of the model can be considered as further simplifi-
t) - uft cations. The first stipulates that loss of insects due to emigration

o) - (95 v oz # .

are made up by immigration in the same category. For instance, if
in whichZ/(X + Y + Z) = ZIP is the fraction of infective insects in the 10 vectors in th& category emigrate, 10 infective insects immi-
population. The rate of changedincreases by(t)gz/(X + Y + 2) grate into the field. This is based on a supposition that the popula-
whenq > 0, because some offspring are infective. Probability ofion of insects is the same globally as locally. From a mathemati-
dying in a unit of time i, assumed to be the same for each statet@l perspective, this is equivalent to making all the immigration
X, Y, andZ thus decrease at ratesof, aY, andaz, respectively. ~ and emigration terms 0. With a fixde ‘births’ and deaths are

Values ofX, Y, andZ also are affected by immigration and emi- Palanced, resulting in the following equality.

gration. (Fig. 2). We assume thqt immigration_rates are i.nde_pend- u(t) - q E(X +Y+ Z) 7
ent of insect numbers within a field, but possibly vary with time.
Thus, X, Y, andZ in a given plant virus pathosystem can increasé is then both a fecundity (‘birth’) and death rate (Table 2) and
at rates ofiy(t), I\(t), andl(t), respectively. On the other hand, can be considered a turnover rate of the insect population. High
emigration is assumed to depend on the numbers of insects withialues ofa indicate a short life span of insects, and low values
the field. ThusX, Y, andZ decrease at rates B{X, E,Y, andE,Z, indicate that individuals live for long times; when= O/day, there
respectively. (It should be noted here that the schematic in Figug#e no ‘births’ or deaths, and the same insects are present for the
2 shows the variables and parameters of relevance, but it does g6tire time period of the epidemic.
fully reflect every rate term considered. For instance, to avoid clut- With the scaling of variables, the plant equations can be written
ter in the figure, it is not specified which terms involve multiplica-after algebraic manipulation as

tion with a variable [e.gExX] and which ones do not [e.dy]). dh _ B(l- h) ~ gorh

Insect vectors acquire the virus based on the ‘contact’ between dt
virus-free insectsX) and infectious plantsS|. The rate is given d
by gaxJK, in which@is as previously defined, amds the prob- o - - (k, +B)! ®)
ability of a virus-free insect acquiring the virus per plant visit. As
with b in equation 4a can be determined from % = k,| = (K, +B)s

a=1-eM ®) with the equation fodr/dt omitted because of redundancy (because
r=1-h+1+g]) (18). The insect equations can be written as

in whichA andT are shown in Figure 1. Although Jeger et al. (18) dy

used the approximatiokgT for ga (because& = AT whenA andT at
are small), we prefer to ugm directly in the equations to ensure

realistic ‘contact’ rate results for large Althoughb goes to 1 dz _

quickly with increasingr (Fig. 3), especially for the nonpersistent ot ny =Tz =0z+qaz
and semipersistent viruses, this does not indicate that 100% \%

vectors are viruliferous at any single time. This is because of t th the equation focbddt omitted because = P/K —y — 2. We
; . - y sing : . hé:’all this Model I. For the nonpersistent and semipersistent classes,
short infectious periods for these classes){ITheaning that the

I . . 2 J (orY) equals 0, indicating that the rate of transfer throughrthe
virus is lost rather quickly by insects for these transmission classes. ;oo v is infinite. One way of obtaining numerical solutions with

. Based on the model assumptions given here, the differential equ@tjuation 9 for the non- and semipersistent classes is to use a large
tions forX, Y, andZ can be written as

value forn as an approximation. An alternative, which was not
dx z X presented by Jeger et al. (18), is to mathematically eliminate the
ra o(t) - U(‘)“Qm% TZ+ 15 (t) - ExX —aX = - equation fordy/dt (because) = «), producing the single equation

ay x for the vectors

—:(pa?ﬂy(t)—EYY—aY—r]Y (6) &z PO
—:(pas%——zg—rz—az+qaz (10)
dz Z dt K
G oy -1z +1,(t)- Bz + U(t)qgig— az
dt X+Y+Z Becausey = 0 for these classegaz can also be removed from
equation 10.

Simplifications and scaling. Equations 4 and 6 can be used to  This continuous-time model (equations 8 and 9 [or 10]) is similar
represent a plant virus epidemic under very general circumstancggseveral other compartmental models of plant and animal diseases
for insect population development. Although there is no analytical1,6,10,15) (chapter 9 in literature citation 4), except that the force
solution for linked differential equations of this type, numericalof infection (equation 2) is based @rand notS (the vector is ex-
integration is straightforward. Because of the large number of termsiicitly considered). It is also similar to some vector-pathagen-
for insect development (equation 6), including fecundity (‘birth’) els (12,13,23,24,27,32), but is more general because all four cate-
and mortality (death) rates and immigration and emigration rategories of disease in the host population are explicitly considered and
in each category, it is difficult to focus on the general effects ofroper choice of model parameters (Table 1) permits the representa-
transmission class on the epidemics. Thus, some simplificationisn of epidemics caused by all four transmission classes.
are justified to gain insight on transmission. The primary simplifi- Equilibria. Jeger et al. (18) found that nonzero equilibria or
cation used here is to specify a constant size of the insect popukieady states can exist for plant and insect categories under some
tion (P = X + Y + Z). Essentially, this converts the varialflénto  circumstances (parameter values ié greater than 0/day. A nonzero
a parameter. The individual insect classésY;, andZz) all still steady state fod (d*) means that disease can persist in the plant
vary over time, but the total is fixed. population. It is possible to determine the conditions necessary for

P O
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the disease to persist by equating the differentia equations
(equations 8 and 9 [or 10]) to 0 and by (extensive) algebraic
manipulations to calculate the combinations of parameters that give
a nonzero value of z (and, hence, s and d). Some of the
equilibrium eguations are given in the Appendix.

Based on the steady-state expressions, a threshold for persis-
tence of disease can be determined in terms of model parameters
and, from this threshold, the basic reproductive number (R,) can

The equation foR, based on equations 8 and 9 (or 10) is given by

_ P%abwz[ e
Ro = QR Tk} E(n kz)
in whicht =1 +a(1-q), ki’ =ks + B, n' =n/(a +n), andk,’ =
ko/(k; + B). Here, U andks' are the inverses of the mean times (in a

population with mortality) that an infective insect stays in the in-

I . ! ! i ) fective state and the plant stays in the infectious state, respectively.
be derived (7) for the plant virus epidemic. For the simpler differ- |+ js the probability of an infected plant becoming infectious,
ential-delay model of Vanderplank (38), R, isknown asthe prog- \yhich is virtually 1 for low natural mortality values (sm@jt n’
eny-parent ratio (“iR" using the symbols of Vanderplank, different g he probability of an insect that had acquired the virus becoming
from those used herefR, is the (average) number of new infected jyfective, which is 1 (or nearly so) for all transmission classes ex-
plants that result from one infected plant introduced into a SU%ept, possibly, the propagative one at lamge-or nonpersistent
ceptible population. Whef, < 1, the disease will not persist; yjryses, abg? in equation 11 is related to the concept of vector
conversely, the disease persistRif > 1 (7). Thus, this funda- propensity proposed by Irwin and Ruesink (14).

mental term is also critical in determining if ‘invasion’ of the dis- Example model epidemics. Use of the model is demonstrated
ease canh occur, that iS, |f an intI’OdUCtion Of a d|Seased p|ant |ntqra|:|gure 4 for the propaga“ve transmission Class Numencal SO-
population results in an epidemic. & < 1, each diseased plant |ytions here (and later), unless explicitly specified otherwise, are
does not ‘replace itself’ with another diseased plant, and an efiased on the parameter values in Table 1 for the corresponding
demic does not occur. More precisely, wh&n 1, the fraction of  transmission class and on the nominal values in Table 2 for other
infectious plants in the diseased populatiefil (+ s + r]) de-  parameters and initial conditions. Mathcad version 8 (MathSoft,
creases to O over time. R, > 1, each diseased plant results in Inc., Cambridge, MA) was used for all numerical integrations. The
more than one new diseased plant (when the population ®ulirsch-Stoer method was utilized to numerically solve the dif-
plants is susceptible). ferential equations. The left column of subfigures shows the results

(11)
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Fig. 4. Example numerical solutions to the vector-virus model of equations 8 and 9 for a fixed population size of the insect population with a propagative-per-
sistent virus (first two columns). For comparison, numerical solutionsto equations 4 and 6 for a variable insect population size (u[t] not equal to a - X +Y + Z])
and a propagative-persistent virus are shown (last colunte)C, Proportion of plants in the healthy (susceptible, vires; h), latently infectedl}, infectious
(9), and removedrf categoriesD to F, Number of insects per plant that are in the latgncgtegory or are infective)( G to |, Phase-trajectory plots of infec-
tious plants in relation to infective inseciisto L, Proportion of plants that are diseasdd( + s+ r; solid lines) on the left-hand axis and the logitiain the
right-hand axis (long dashed lines).
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based on eguations 8 and 9 for fixed P/K and a plant mortality
(and replanting) rate of 3 = 0.01/day. The parameter conditions cor-
respond to an R, of 3.8 (equation 11); that is, each diseased plant
produces, on average, 3.8 new diseased plants in a population of
susceptible individuals. The healthy plant population declines, ini-
tidly, in a negative exponential or reverse-sigmoidal fashion as the
other disease categories increase (Fig. 4A). Eventually, a minimum
value of h is reached and a very dlight increase then occurs be-
cause of the continuing introduction of new healthy plants (because
3 > O/day). Both latent and infectious plant disease (I and s, re-
spectively) increase to maxima around day 100 to 110 and then
decline. Removed disesse (r) increases to a maximum of around
0.7. Because R, > 1, dl four plant variables in Figure 4A ap-
proach nonzero equilibria at large times, meaning that the disease
persistsin this system (Appendix) (18).

Total disease incidence (d=1—-h =1+ s +r) increases in this
epidemic to around day 150 and then declines somewhat (Fig. 4

The value ofd fluctuates around an equilibriund*j of 0.71 at

large times (equations A3 and A4). We have found that a general

models (16) with no mortality or regrowth of the host, the asymp-
totic result for dis of the general form

d, =1-(1-dy)e ot (13)

The asymptotic value of d for the example in the center column of
Figure 4 is 0.978 (Fig. 4K), which agrees fairly well with the ap-
proximation of 0.988 obtained with equation 13. However, we
have not yet determined the exact expression for the relation be-
tween d,, and R, when 3 = O/day in the model.

The third column of Figure 4 corresponds to the more general
model that includes population growth of the vectors and explicit
immigration and emigration (equations 4 and 6). Here, parameters
are K = 1,000, P, = 2,000 (giving an initial condition of Po/K = 2 in-
sects per plant), o = 0.1/day, Ix(t) = 250 insects per day (or 0.25 per
plant per day), Iy(t) = 1,(t) = 0, Ex = Ey = E; = 0.04/day, and 3 =
9)01/day. The vector ‘birth’ term was specified as

_X+Y+20

u(t) = 018(X +Y +Z) 10000 H

analytical expression for the disease equilibrium value in terms of

R, can be given as

d*<1-(R,)" (12)
The equality is approached fisgoes to 0 (e.gf3 < 0.001/day).
However, even witls = 0.01/day, 1 —R,) gives a predicted d*
of 0.73 with this example (Fig. 4J), relatively close to the exact
model value of 0.71 obtained from equation A4. The logit of d
(logit[d]) is adso shown in Figure 4J; this variable increases in a
mostly linear manner with t up to day 150, indicating that disease
progress was initially well described as an exponential and then a
logistic process; closer to the d*, the logistic nature of the epi-
demic clearly breaks down.

As the number of healthy plants declines (or d increases), both
the number of latent (y) and infective (2) insects per plant increase
until around day 125 and then decline (Fig. 4D). Because of fixed
P, virus-free insects are determined from P/K —y —z. Bothy andz
approached nonzero equilibria (equation A1zf)rn this example,

the maxima and equilibria for andz are considerably less than

the fixed insect density of four insects per pl&iK{]. The change

which is a logistic function with a maximum population size of
10,000 insects (or 10 per plant) and a fecundity rate of 0.18/day.
Note that this fecundity rate is coupled with a mortality rajeof
0.1/day and some nonzero immigration and emigration rates in the
example. Other parameters are as listed in Tables 1 and 2. Nu-
merical results were divided b¢ (e.g.,H/K = h) to give the same
scale as used in equations 8 and 9.

This third example was chosen to show the robustness of the
model by demonstrating that the epidemic outcome can be very
similar for a fixed insect population size (left-hand column) and a
variable population size. The behavior of the plant and insect cat-
egories over time are very similar between the left- and right-hand
columns of Figure 4 (Fig. 4A and C, and Fig. 4D and F), and the
phase plots of andz show the same pattern (Fig. 4G and I). Alter-
ation of the parameters listed in the previous paragraph could make
the similarity even greater. Thus, the use of a fixed population size
for the insect population was not found to be overly restrictive in
interpreting epidemic results. The remainder of this paper deals with
fixed P as specified by equations 8 to 10.

Model with explicit terms for vector immigration and emi-
gration. The simplified plant virus epidemic model of equations 8

in healthy plants and virus-free insects is driven by infectious plantand 9 can be expanded for vector immigration/emigration, while
(s) and infective insects), as indicated by the first lines of equa- maintaining a fixed®. One approach is to specify some additional
tions 8 and 9; thus, it is informative to consider the phase pkt of parameters (18). L&t represent the number of vectors that emi-
andz (Fig. 4G), as done commonly in population dynamic mod-grate per time, which can take any value from & tper day. With
eling (26). In this example epidem&andz increase concurrently fixed P, the emigrating and dead vectors must be replaced by either

until zis about 0.22, both then decline uatié about 0.1 and then

there is an increase again. A simulation with much lohgedi-

reproduction within the field (‘births’) or immigration. Thus, one
can equate the following two expressions.

cates that this trajectory quickly approaches the equilibrium val-

ues for these two variables (L. V. Maddenpublished data).

The central column of Figure 4 corresponds to equations 8 and

ot) +[1(t) + 1y (1) + 1, (1)) =V +a HX +Y + 2)

9, with the same parameters and initial conditions as the left-hangle gefined, as the fraction of virus-free insects ¢ategory) in
column, but withB = 0/day, indicating that plants do not die (or the pool of immigrants an6, as the fraction of insects in the la-

are replanted) during the epidemic. For this epidemic= 4.4

tent () category in the pool of immigrants. We then let@; — 6,

(equation 11). For the first 90 days of the epidemic, the change g the fraction of the immigrant pool that is infectidecategory).
the four plant categories (Flg 4B), as well as the InS_ect Catego”ﬁ%”'thermore’ we |et|J be the fraction of dy|ng and emigrating
(Fig. 4E), was nearly the same as wpen 0.01/day (Fig. 4A and  (|ost) insects replaced by reproduction inside the field. This means

D). A plot ofd versud was also sigmoidal.

that 1 — is the fraction of dying and emigrating vectors replaced

Because of the lack of replanting, there are no nonzero equililyy immigration.

ria, andh continues to decrease (athihcrease) at large times ss

For this model, equation 8 for the plant population is unchanged and

andz go to 0 (Fig. 4H and K). Howeven, does not reach O, or, equation 9 is replaced, after extensive algebraic manipulation (18), by
equivalently,d does not reach 1 at very large times. This is be-
cause the fraction of diseased plants that are removed or postigy

. P | \Y v +aPQ
fectious (/d) goes to 1 beforté reaches 0; in other words, there — = @®@sg—-Yy - 24" Eﬁ +n +F§Y + (1- LlJ)ez ETE
can be no further increasedrif all diseased plants are postinfec-
tious (15). In general, we have found that the asymptotic value of

d (d.,) lies between 1 —R,)* and 1. For a wide range of popula-
tion-dynamic compartmental models (19) and for differential-delay
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in which all terms are as defined previoudly (Table 2). We call this
Model 11. Aswith Modédl I, elimination of one of the vector equa-
tions is possible for the nonpersistent and semipersistent classes,
because there are no insects in the latent category (1/n = 0 days).
The equation for infective insects becomes

d aP g vV Vv oV +aPQ
& B e e)FE ] 09

For these two classes, 6, = 0, by definition. Because g = 0 for the
nonpersistent and semipersistent classes, multiplication terms
involving g can a so be removed from equation 15.

Using these new parameters and equations 8 and 14 (or 15), a
wide range of epidemic conditions can be specified. For instance, the
simplified model without explicit emigration/immigration (Model
) is obtained when V = 0/day (no emigration) and s = 1 (all dying
insects replaced by within-field reproduction). When V=0 and ) <
1, there is no emigration, but some of the dead insects are replaced
by immigrants. The extreme case of no colonization of the plant
crop by vectors can be specified with V=P and y = 0 (all vectors

tion of P/K. That is, values d?P/K were chosen so th&, was the
same (= 3.8) for the four transmission classes at the nominal val-
ues ofa andq.

The virus-related parameteks A, k,, andks (Table 2) were then
evaluated for their influences on epidemics. These terms reflect the
rates at which inoculation and acquisition occur and the rates at
which latently infected plants become infectious and then become
postinfectious. Because bokh and\ are based on the inherent
properties of viruses in each transmission class, they cannot be
varied as widely as some other terms without ‘giving’ a virus in
one class the properties of another class. Thus, these terms were
varied by+50% of the nominal values in Table 1. For the cases
shown herek, andk; were also varied by50%. The other virus
parameters of) andt were not tested, since there is less oppor-
tunity to alter these properties through management unless one could
replace a wild-type virus with a less aggressive isolate in nature.

For selected numerical solutions of equations 8 and 9 (or 10) with
the parameter values described above, the exponential rate of in-
crease ird (rg) during the early part of the epidemics (witkn 0.05)

emigrate per time period, and no ‘births’ within the field). Here,was calculated. A plot of Idf versust was constructed for each
all emigrants are replaced by immigrants, andotberms specify ~model epidemic, which was found to be a straight line for small
the immigrants that are in the Y, andZ categories. This case can values oft (L. V. Madden,unpublished data). An estimate ofe

be important for nonpersistent viruses (14).

was obtained as the estimated slope a)laérsust for this linear

Equations for equilibrium or steady states based on equationsPgrtion of the graph, using ordinary least-squares regression.
and 14 (or 15) can be obtained, but are very complicated (Appen-For some .populatlon_-dyna_mlc processes, it is known that there
dix) (18). If Y < 1—so0 that some of the insects lost to death ané® an approximate relationship betweerand R, (at smallR; [5]

emigration (ifV > 0) are replaced by immigrants—and eitfeor

1 -6, -6, is greater than 0, then there is no threshold for disease
to persist and, thus, no definab®Rg. This is because there will

andd) of the form
re = In(R;) (16)

always be an influx of some new viruliferous insects into thén which p is the average age of infectivity of an individual (in-
system, and infections of plants will result not just from infectedected plant or viruliferous insect). For the numerical results, it
plants in the field (through the activity of local vectors), but alsovas determined if equation 16 could describe the plant virus epi-
from viruliferous individuals originating outside the field (through demic data when p (5) was given by

the activity of immigrant vectors). Thus, early in the epidemic (at
small t), disease increase is a mixture of exponential and linear m
processes. However, wh8p= 1 (meaning that all immigrants are

virus free), there is a threshold for persistence, Bni defined

as in equation 11, except thtatandn' are given by the more com-

plicated expressions
. vV, _
O

n

o(+r]+!
P

and

n =

St By Rt g %+§[1 1
2k, +B0 Ok, +B0 On+al +a

The first two terms within the brackets of equation 17 represent

the mean for the plant population, and the last two terms represent

the mean for the insect population.

Model I1. The model with fixedP (or P/K) and explicit vector
immigration/emigration (Model 1l: equations 8 and 14 [or 15])
was used to determine the effects of vector migration on plant vi-
rus epidemics for the four transmission classes. The nominal values
of the parameters from the nonmigration model (Model I: equa-
tions 8 and 9) were used, together with the value/iéfthat pro-
duced anR, of 3.8 with Model I. Selected values of vector emi-

Numerical solutions to equations 8 and 14 (or 15) over a wide rangation rate \(/P), fraction of lost vectors (by death and emigration)
of time values have not been previously determined; the relationshiPlaced within the field by reproductiogr)( and fraction of infec-

between model parameters atichas also not been ascertained.

tive (1 —6; — 6,) immigrants were then tested for their effects on

Numerical methods. Model |. The effects of selected insect epidemics. In all Caseez =0 (nO immigrant vectors in the latent
and virus parameters on plant virus epidemics were determin&date) was used in the model, for simplification of presentation.
for each of the transmission classes for Model | (no explicit vector In the first evaluationy/P values of 0.5 and 1.0/day were con-

migration). Unless stated otherwise, the values of the transmissi

Siflered at two extreme values of B— 6, (Table 3). WheV/P =

parameters given in Table 1 were used for the corresponding trandday, all vectors in the system leave the system dailyVior
mission class, together with the nominal values of the other pararh/day, we considered that all emigrants and insect deaths were re-

eters and the initial level of the variables (elg.for initial la-
tently infected plants) given in Table 2.

placed by immigrants (no ‘birthsly = 0 or 1 - = 1); forV/P =
0.5/day, we specified that half of the emigrants and deaths were

Initially, the vector parameters that are unrelated to plant viteplaced by immigrants and the rest replaced by within-field re-

ruses (at least in the model) were evaluated, nadya, andg

production ¢ = 0.5). For each of the twd/P values tested, we

(Table 2). These terms reflect vector density, mortality rate (andonsidered that all immigrants were either infective @ —6, =

hence, mean vector lifetimes because of the fRedand mobil-

ity, respectively. The following values &K were tested: 0.05,

1) or virus free@, =1, or 1 -6, -6, = 0).
In the second evaluation of epidemics for Model I, we fiRed

0.1, 0.2, 0.4, 0.8, 1.6, 3.2, and 6.4 vectors per plant. Three valua@s0.9 (1 -8, — 6, = 0.1). Thus, 10% of the immigrating insects

of a were evaluated, 0, 0.2, and 0.4/day, and five valugsnare

were infective in all cases, rather than the extreme cases of 0 and

tested, 0.5, 0.75, 1, 2, and 3 plants per day. For the evaluations1§10% in the evaluation in the previous paragraph. We considered
o and @ the nominal values oP/K were selected for the four the effects of emigration rat®/P, ranging from 0 to 1 per day
transmission classes based on the results from the initial evalud@ble 3), with all emigrating and dying insects replaced by immi-
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grants (Y = 0). An additional treatment consisted of an intermedi- The effects ofP/K can also be seen in Figure 6A, in which dis-
ate V/P and with all lost insects replaced by ‘births’ instead ofease incidenced) versus timet] is shown for epidemics with an
immigration (U = 1). R, of 3.8. Values oP/K ranging from 0.2 to 4 vectors per plant
were required to achieve thi&. At large times, values affor all
RESULTS transmission classes approached a steady state of ~0.71 because of

Vector density. The propagative transmission class differed fromthe €dqual, values. However, Figure 6A also shows that the epi-
the others in terms of the effects of vector den$i )Y on plant d_emlc behaylor in the short term (|°\.N to intermedigethe tran-
virus epidemics (Fig. 5). In general, the semipersistent and circul§!ent behawqr—was not necessarily the same for the different
tive viruses had the highest disease incidence (and higheat Classes. For instance, tat 75 days, the nonpersistent virus class
any given value oP/K, followed by the nonpersistent and then by had the hlghesﬂ!, the propagative virus class had the Iowes_t, and
the propagative viruses. Although the nonpersistent class is chardd® Other two virus classes were intermediate in ternts dhis
terized by the highest rates of virus inoculatik) &nd acquisi-

“OT‘.(?‘) (Table 1) (2.5).’ the moculathlh))(and acquisitiong) PrOb‘_ TABLE 3. Tested values of vector emigration rate (V/P), fraction of virus-free
abilities per plant visit are ~1 for this as well as the semipersistei,) and infective (1 — 8; — 8,) insects in the immigrant pool, and fraction of
class (equations 3 and 5) (Fig. 3). Thus, the very short infectiousst vectors (from mortdy and emigration) replaced by within-field reproduc-
period (1t) for the nonpersistent class results in lower disease level®n () for the explicit vector migration model (Model II; equations 8 and
than those for the semipersistent class. Likewise, althaegtdb 14 [or 15[}

are lower for the circulative compared with the nonpersistent clasgase |abél V/IP 0, 1-6,-6, M
the much longer infectious period for the former results in close t -
. . . valuation 1

the same disease values as the semipersistent class. On the o%’;er 0 + + 1
hand, the even longer infectious period for the propagative class; 1 0 1 0
does not compensate for the lavandb values, and this class has iii 1 1 0 0
the lowest levels of disease incidence at the té¥tedalues. iv 0.5 0 1 0.5

Numerical results for steady-state disease incidetyeagreed Voo 0.5 1 0 0.5
with the predicted values from equation A4 and were well ap-E‘(’;/"'luat'onz 0 . . 1
proximated by 1 —R,)™ (equation 12). Disease incidence exceeded 0 0 0.9 01 0
0.5 with a P/K of only 0.1 for the semipersistent virus class (at 0.125 0.125 0.9 0.1 0
nominal values of the other parameters); to exceed this incidence 0.25 0.25 0.9 0.1 0
vaue with a propagative virus, a P/K between 1.6 and 3.2 was re- 0.25/1 0.25 0.9 0.1 1
quired (Fig. 5). Values of P/K that resulted in an R, (equation 11) 0.5 0.50 0.9 0.1 0
of 1—the threshold for disease persistence—were 0.31, 0.044,l 1.0 0.9 01 0

0.072, and 1.07 vectors per plant for nonpersistent, semipersistem’,able 2 and text has a fuller description and units of parameters, and Table
circulative, and propagative classes (at the nominal values of thé has nominal parameter values with the four transmission classes. In all
other parameters [Tables 1 and 2]), respectively. Model epidemigg2Ses: the fraction of immigrants in the latent sgienas 0.

L . . isease progress curves are shown in Figures 12 and 13. Case i and 0/1 are
were very similar in shape to numerous published disease progresgyivalent to the model without explicit migration (Model I; equations 8

curves for perennial and annual crops (4,22,30,35-37). and 9 [or 10]).
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Fig. 5. Plant disease incidenca) (versus timet] for the four virus transmission classes based on the parameters and initial conditions in Tables 1 and 2 at eight
values of vector density?(K), ranging from 0.05 to 6.4 vectors per plant. Results are based on equations 8 and 9 (or 10). P&uasecthown on the sub-

figure for circulative-persistent transmission. The line symbols and ordering of values are the same in each subfigufeRyéheemtion 11) for the eight

levels of P/K (listed from lowest to highest) are 0.16, 0.33, 0.65, 1.3, 2.6, 5.2, 10.5, and 21.0 for the nonpersistent class; 1.9,32.384637.1, 74.1, and

148.3 for the semipersistent class; 0.71, 1.4, 2.8, 5.6, 11.3, 22.6, 45.1, and 90.2 for the circulative-persistent d¥s<).88d @19, 0.38, 0.75, 1.5, 3.0, and

6.0 for the propagative-persistent class.

584 PHYTOPATHOLOGY



is not a constrainta(andb [equations 3 and 5] are about 1 at all
the @ [and T] tested). Thus, increasinghad a pronounced effect
on epidemics for these transmission classes.

was primarily due to the differences in the length of the latent
(/n) and infectious (/1) periods in the vector (Table 1) and the
resulting 1 (equation 17) among the four classes.

The change in infectious plant diseaseand infective vectors With viruses requiring long periods for acquisition and inocula-
relative to the total vector population siz&/R = z/[P/K] = tion and a long latent period in the vector, the positive effects (in
[Z/K]/[P/K]) for the four disease progress curves in Figure 6A aréerms of highed) of increasingp could be partially negated by the
shown in Figure 6B and C. The steady-state valussaafre about decreased timel} available for these processes at each plant visit.
0.07 (7% of the plants) for all classes, but values were differeror instance, with a propagative virusp af 3 gives more oppor-
among the four classes early in the epidemics. The time of maxunities for a viruliferous insect to transmit a virus to healthy plants,
mum s generally was associated with the length of the latenbut each opportunity has a lower probability of success, bebause
period in the vector (fy), but not in a linear manner. The nonper- decreases agincreases. For the propagative class, in particalar,
sistent virus class had the highest values @it the time of the andb both decrease substantially@mcreases. This resulted in a
maximum, and the propagative class had the lowest (Fig. 6B). Thertually unchanged?, with the parameters being used here (Fig.
other classes were intermediate. 8). However, there were some differencesdirat intermediate

Steady-state and maximum values of the fraction of vectors théimes (90 to 120 days).
are infective Z/P) varied with the transmission class, even at the Virus-plant interactions. The rate at which the virus passes
sameR, (Fig. 6C). There were similar steady states for the nonthrough the latentkf) and infectious periodd in the plant (Fig. 2)
persistent and propagative classes, which were considerably be-
low the values for the other two classes. The maxirdifmwas

reached later for the propagative than for the nonpersistent clas 1.00 A NP (1.1)
due to the long latent period in the vector for the former class. Th )
change inZ/P with time for the semipersistent and circulative T 0.80 =
transmission classes was similar, except that the maximum wi 0.60 F
higher for the semipersistent viruses. § ’
Vector mortality. The values of insect densit/K) that re- S 940 - ’
sulted inR, = 3.8 with nominal values of the other terms (Fig. 6) § ‘ ,/T\,‘\Cp (0.3)
were used for the evaluation of insect mortality or turnover ratea. 45 | 7 /
(a) and mobility (p on plant virus epidemics. Vector mortality/ /,'v\ PP (4.0)
turnover had a strong differential effect on epidemics for the fou 0.00 — [T L
transmission classes (Fig. 7). For instance, there was virtually r 0 50 100 150 200 250
effect ofa on epidemics caused by nonpersistent viruses and a ve Time

large effect ofa on epidemics for the circulative and propagative

classes. The nonpersistent virus result is due to the short tim . 0.30
. . . . w

needed for an insect to acquire and transmit the virus dfd -
1/k;) relative to the life span of the insects, as well as the lack ¢ § 0.24
latent period (I = 0). That is, even if the individual vectors were @
only present for a very short time (higf), there would still be 2 0.18
sufficient time for acquisition and transmission. There was vir- @
tually no change iR, with change iru for this class (Fig. 7). o 012

The long times needed for an insect to acquire and transmit 3
circulative or propagative virus and the long latent period in the "§ 0.06
vector, especially for the latter class, are the reasons why the €
transmission classes were sensitive to changes. iR, varied 0.00
greatly with change i for these classes (Fig. 7). With a high 0 50 100 150 200 250
there is insufficient time for acquisition and transmission; how- Time
ever, with smalbr (long mean life span), the long acquisition and
. . . . 0.40
inoculation times no longer were constraints. Note that0/day — C
corresponds to the vectors living for the entire period of the epi® 032 - SP
demic, with no reproduction or deaths (analogous to the model iN ™ ,’ R
literature citation 8). With this minimum value of disease inci- 2 ooat ] /‘*
dence reached higher levels with the propagative transmissicg ’ I cp \
class than with the other classes in Figure 7. However, vector de > 44 | ! \\
sity (P/K) was different for the four classes in this comparison. At S ! = ——— T
o = 0/day and the san®K for all classes (e.gR/K = 0.3), dis- 3 0.08 ," NP PP
ease incidence anf, for the propagative class were lower than £ /\(N —~———
for the circulative class, but still higher than for the nonpersisten 0.00 It = = — —— '

class (L. V. Maddenynpublished data).

50

100
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200

250

Vector mobility. The number of plants visited per dag @lso
had a large effect on epidemics (Fig. 8), but the sensitivity of th-
fo.ur ?Iasses to ch_anges in this _parameter was different Comp?‘rEﬁ’;. 6. A, Plant disease incidence (d) versus time (t) for the four transmission
with insect mortality/turnover (Fig. 7). In general, the nonpersiStasses based on parameters and initial conditions in Tables 1 and 2, with
tent and semipersistent classes responded most to changes inevels of vector density (P/K) selected to produce an R, (equation 11) of 3.8
followed by the circulative and then the propagative classes (Fifor each epidemic. Labels give the transmission class (Table 1) and the value
8). Because increasing the number of plant visits per day necesgj-P/K is in parentheses. B, Infectious plant disease (s) versus time for the
tates that less time is available per visit to feed (and potentiall e85 Progress curves in A for the four transmission classes. C, Fraction of

. it the Vi d ith i indTabl e vectors that are infective (Z/P) for the disease progress curvesin A for the
acquire or transmit the virus),decreases with increasiggTable four transmission classes. p of equation 17 equals 8.1, 9.1, 10.4, and 12.4 days

2). With the very short acquisition and transmission times for nonr the nonpersistent (NP), semipersistent (SP), circulative-persistent (CP),
persistent and semipersistent viruses, a short feeding time per viaiid propagative-persistent (PP) classes, respectively.
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Fig. 7. Plant disease incidence (d) versus time (t) for the four virus transmission classes based on the parameters and initial conditionsin Tables 1 and 2 at vec-
tor mortality/turnover rates (a) of 0, 0.2, and 0.4/day. Vector density (P/K) is 1.1, 0.2, 0.3, and 4.0 for the nonpersistent, semipersistent, circulative-persistent,
and propagative-persistent classes, respectively. Results are based on equations 8 and 9 (or 10). Values of a are shown next to the curves for some of the classes.
Values of R, (equation 11) for the three a values (listed from lowest to highest a) are 4.1, 3.8, and 3.5 for the nonpersistent class; 6.9, 3.8, and 2.6 for the
semipersistent class; 22.8, 3.8, and 1.8 for the circulative-persistent class; and 207.1, 3.8, and 1.1 for the propagative-persistent class.
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Fig. 8. Plant disease incidence (d) versus time (t) for the four virus transmission classes based on the parameters and initial conditions in Tables 1 and 2 at vector
mobility rates (¢) of 0.5, 0.75, 1, 2, and 3 plant visits per day. Vector density (P/K) is 1.1, 0.2, 0.3, and 4.0 for the nonpersistent, semipersistent, circulative-persistent,
and propagative-persistent classes, respectively. Results are based on equations 8 and 9 (or 10). Values of ¢ are shown next to the curves for some of the classes.
Values of R, (equation 11) for the five @ values (listed from lowest to highest ¢p) are 0.94, 2.1, 3.8, 15.1, and 33.9 for the nonpersistent class; 0.95, 2.1, 3.8, 13.8, and
25.7 for the semipersistent class; 1.8, 2.9, 3.8, 5.9, and 6.9 for the circulative-persistent class; and 2.9, 3.8, 3.5, 4.4, and 4.2 for the propagative-persistent class.
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had about the same effect on epidemics for all four transmission
classes (L. V. Madden, unpublished data). This is demonstrated in
Figure 9A and B for the nonpersistent class. There was no long-
term (steady state) effect of k, on disease incidence, as expected
from the small influence that k, has on R, (equation 11). However,
the latent period did have a transitional effect, as seen around t =
50 to 80 days in Figure 9A: increasing the length of the latent
period (decreasing k,) resulted in lower disease incidence during
this time period.

mit the virus before emigrating. However, when 8, — 6, equaled

0 for the nonpersistent class, there was virtually no effect on the
epidemics relative to the nominal situation of no vector migration
(Model I; case i). Because of the very high rates of acquisition and
inoculation, coupled with the lack of latent period in the vector
(1/n = 0), there was sulfficient time for the entire transmission pro-
cess with nonpersistent viruses, even when there was no vector

The infectious period in the plant had both long-term (steady 1.00 X
state) and short-term (transitional) effects on epidemics (Fig. 9B). = = -, .
The steady-state results were expected based on the large effect of % 0.80 2 03¢ //ﬂ/“§~ Temt——
ks on R, (equation 11). Increasing the length of the infectious pe- ® o060 - < ,02,
riod (decreasing ks) resulted in a higher R, and disease incidence. o U

There was a differential response of the four transmission classes f 0.40 ,’ 01 .
to change in the rate at which the virus is acquired (\) and inocu- = ', / : Non-persistent
lated (k,) or, equivalently, the mean time to acquire (1/A) and trans- g 020 I/ , A
mit the virus (1/ky). This is demonstrated for the nonpersistent and 0.00 P . . ,
circulative-persistent classes in Figure 9C and D. For the trans- o 40 80 120 160 200
mission classes with short times to acquire and inoculate (nonper- ]
sistent [Fig. 9C] and semipersistent [data not shown]), change in Time
these parameters had no effect on disease progress. This is be- 1.00
cause a+50% change in A and k; still resulted in values of a and b — k = L ———
(equations 3 and 5) of around 1 per plant visit. However, for the S o8 7 NI~ T
transmission classes requiring long times for acquisition and inocu- 2 0-04/ ¢, TNiTT e —
lation (the two persistent classes), achange in A and k; had alarge g 060r '/ ’ 0.08 -
effect on a and b and the resulting epidemics. Increasing either or B o0 b /, )
both of these rate terms (decreasing the mean times to acquire or - K D12 Non-persistent
transmit) resulted in a higher R, and disease incidence (Fig. 9D). &6 0.20 - ///, .

The effects of a simultaneous change (+50% of the nominal val- A" B
ues) in ky, A, ky, and ks on virus disease epidemics can be seen in 0.00 ‘ ' : :
Figure 10. Here, a 50% increase in ky, A, and k, was coupled with 0 40 80 120 160 200
a50% decrease in k; (labeled x1.5, and termed an increase in the Time
rates); conversely, a 50% decrease in k;, A, and k, was coupled
with 2 50% increase in k; (labeled x0.5, and termed a decrease in N 24,4872
the rates). The two persistent classes were most affected by the T os0 kP T
simultaneous change in these four parameters, with no disease o —
increase when the terms were reduced by 50% (giving an R, of ® o060 F
less than 1) (Fig. 10). This can be attributed to the large effect that %
the rate of inoculation/acquisition and also the length of the infec- S 040 ;
tious period have on disease progress for persistent viruses (Fig. S | Non-per3|stent
9D). However, changing the four parameters had only minor ef- o 020 C
fects on the nonpersistent and semipersistent classes (Fig. 10). For 0.00 b—="1 I ) !
these two classes, results were primarily due to the influence of ks, 0 40 80 120 160 200
since the other parameters had little individual effects on epidem- )
ics (Fig. 9A and B). Time

Exponential rate of disease increase. As exemplified in Fig- 1.00
ure 4Jto L, there was a straight line between logit(d) and t in most = k]: A= -
cases when t was not large. This indicated that disease increase 2 080 3.7 B
was approximately exponential at small d (4,5). Therewas, in fact, a % 0.60 - ’ ., -~ T
linear increase in In(d) with t at small times for the Model | epi- @ - ,’ ¢ 2 D
demics summarized in Figures 5 to 10 when R, > 1 (L. V. Madden, T 040 | !
unpublished data). Estimates of the exponential rate parameter, r, ”g’ /I ‘ Circulative-Pers.
ranged from 0.01 to 0.78/day for these cases. Using equation 16 a 020 , ‘ -
and p defined by equation 17 could be well predicted for val- A dnnpee
ues ofR, less than 15 (Fig. 11), although there was a slight over- 0.00 0 20 80 120 160 200
prediction by this equation.

Explicit vector migration. First evaluation. Vector immigra- Time

tion and emigration had a pronounced effect on the epidemic'_s

19. 9. Plant disease incidence (d) versus time (t) for the nonpersistent and

(MOdel. II:_equations 8 and 14 [or 15].)’ but the eﬁECts varied Witn:irculative-persistent virus transmission classes based on the parameters and
transmission class (Fig. 12). In the first evaluation shown here, igitial conditions in Tables 1 and 2 with changes in A, k, (inverse of mean

situation with high vector emigratiow/p = 0.5 or 1/day) (Table 3),
the fraction of infective insects in the immigration pool @;— 6,)

latent period in plant) for nonpersistent viruses; B, ks (inverse of mean infec-
tious period in plant) for nonpersistent viruses;, C, k; and A (rates of virus

determined the epidemic outcome. For the circulative-persisteffoculaion and acquisition) for nonpersistent viruses; and D, ky and A for

and propagative-persistent transmission classes, there was no

ease increas&zf < 1) when all immigrants were virus free (8—

(ﬂgc_ulativepersj stent viruses. Values of the parameters are indicated on the
graphs. Values of R, (equation 11) for the three cases in each subfigure (listed
from bottom to top curves) are A, 3.8, 3.8, and 3.8; B, 2.6, 3.8, and 6.8; C, 3.6,

6, = 0 and6, = 0) (Fig. 12, cases iii and v). This is because ther@g, and 3.8; and D, 1.5, 3.8, and 5.7. Vector density (P/K) is 1.1 and 0.3 for
was insufficient time for the immigrating insects to acquire or transthe nonpersistent and circulative-persistent classes, respectively.
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colonization (when dl vectors emigrated daily). The semipersistent by immigrants [case 0.25]). The propagative-persistent class and,
class was intermediate between the nonpersistent and the two per- to a lesser extent, the circulative-persistent class were especially
sistent classes in terms of the effects of virus-free immigrants on sensitive to within-field reproduction versus immigration (Fig. 13).
disease progress. That is, disease incidence increased over time  This is because the fraction of infective insects in the total popula-
(Ry > 1) when 1 — 6, — 6, equaled 0, but incidence was less thantion (the variableZ/P) reached a higher steady staf® P) (equa-

the nominal situation with no vector migration. tion A5) when 10% of the new vectors (the immigrants) were al-
Plant disease incidence approached 1 in the extreme situationrefady infective (e.g., case 0.25) compared with the situation in
all immigrants being infective (16, —8, = 1), whether all\{(/P = which new vectors (from ‘births’) acquired the virus and became

1/day) or half Y/P = 0.5/day) of the vectors emigrated per dayinfective very slowly (e.g., case 0.25/1). For examptéP for the

(Fig. 12, cases ii and iv; Table 3). In these cafgss not de- circulative class equaled 0.14 for case 0.25 in Figure 13, but equaled

fined, becaus8, < 1 (18). Transmission class had very little effectonly 0.03 for case 0.25/1.

on the results. This combination of parameter values essentially Epidemic behavior in relation td/P varied with transmission

created a simple-interest or monocyclic disease situation (4), eslass when there was no reproduction in the field and immigrants

pecially for the two persistent classes. This is because an increasplaced lost insects exclusively € 0 [cases 0 to 1 in Table 3]).

in d was due to outside inoculum (infective immigrating vectors)increasingV/P led to lower disease development for the semiper-

rather than to spread from plant to plant, since there was no tinsistent and circulative classes (Fig. 13). This is becau&e(equa-

for the latter. For this simple-interest process, increase in diseaten A5) without emigration was higher than the value ofél —6,

is linear at smal. used here (0.10). For instan@/P equaled 0.21 for the circula-
Second evaluation. Figure 13 shows the results of the secondtive transmission class ¥tP = 0/day (case 0), which was roughly

epidemic evaluation with Model Il, in which the effects of a widedouble the value of 1 8, — 6,. Thus, increasing emigration rate

range ofV/P values on disease progress were determined wheiv/P) led to replacing more and more infective insects with virus-

10% of the immigrants were infective (16-— 6, = 0.1), rather free ones, diluting the infective individuals in the population, re-

than with the extremes of 0 and 100% in Figure 12. There wassailting in a loweZ/P and, hencej.

much greater rate of disease development when lost insects (fromFor the nonpersistent transmission class, the opposite result was

death and emigration) were replaced by immigrants than by ‘birthsseen; that is, increasingP resulted in increasing the rate of dis-

This can be seen by comparing two pairs of epidemics in Figurease development (Fig. 13). However, the reason is the same as for

13. The first pair is the standard no-explicit-migration case (Modehe semipersistent and circulative clas@& without emigration,

I: equivalent tov/P = O/day andp = 1 [case label 0/1 in Table 3]), but immigrants solely replacing dead insects, was @R =

and the case fov/P = O/day andp = 0 (no emigration, but deaths 0.03 [case 0]) and less than the #,— 6, parameter value used

replaced solely by immigrants [case 0]). The other pair is the casere. Thus, as emigration raM/RF) increased, the fraction of all

for V/IP = 0.25/day andp = 1 (one-quarter of vectors emigrate insects that were infective increased (from the local acquisition of

daily, all replaced by within-field reproduction, and, thus, no in-the virus and the increasing pool of infective immigrants), leading

troduction of virus into the field [case 0.25/1]) and the case foto higherd. For instanceZ*/P = 0.04 (equation A5) fol/P =

V/P = 0.25/day andp = 0 (emigrants and deaths replaced solely0.25/day with the nonpersistent class (case 0.25). Interestingly, for
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Fig. 10. Plant disease incidence (d) versus time (t) for the four virus transmission classes based on the parameters and initial conditionsin Tables 1 and 2 and
simultaneous changes in k;, A, k,, and ks, corresponding to the inverses of the mean inoculation time, acquisition time, latent period (in plant), and infectious
period (in plant), respectively. Curve label xkf{:A, andk, increased by 50%, ang decreased by 50% over the nominal values. Curve labelkp25:and

k, decreased by 50%, akgincreased by 50% over the nominal values. Unlabeled curves: nominal values of all parameters (Table 1). Vectd/disity (
1.1, 0.2, 0.3, and 4.0 for the nonpersistent, semipersistent, circulative-persistent, and propagative-persistent cletssely, Mspes ofR, (equation 11) for
the three curves in each subfigure (listed from bottom to top curve) are 2.5, 3.8, and 6.9 for the nonpersistent csm@.B3,03or the semipersistent class;
0.97, 3.8, and 10.5 for the circulative-persistent class; and 0.70, 3.8, and 13.6 for the propagative-persistent class.

588 PHYTOPATHOLOGY



the propagative transmission class, there was no apparent effect of duction (or virus-free immigrants), artt declined to 0 a®/K
different /P values (at Y = 0) on disease incidence (Fig. 13), partly decreased. The/K value at whictd* was 0 corresponded &, =
because 1 — 6, — 6, used here was about the same as the stead§: d* was 0 at all loweP/K values. For the situations with immi-
stateZ/P value with no emigratiorZf/P = 0.11 [case 0]). grating infective insects (1 6, — 6, > 0), d* never reached 0 as
One further way that vector migration can be assessed is by pld®/K decreased (Fig. 14), because there were always some infec-
ting steady-statd values @*) (equation A3) versu®/K for vari-  tive insects being introduced.
ous combinations of/P andy (and the nominal values of all other = Thesed* values in Figure 14 confirm the results in Figure 13.
parameters). These relationships are shown in Figure 14 for four dhat is, the propagative class was very sensitive to how lost in-
the cases in Figure 13, 0/1, 0, 0.25/1, and 0.25 (Table 3). Predi&ects were replaced (‘births’ versus immigrants [e.g., case 0.25
tions from equation A3 were in agreement with the numerical solurersus 0.25/1]). Results similar to the propagative class can be
tions of equations 8 and 14 (or 15) at the valueB/Kfused in  seen for the other transmission classes only aPibinwith exact
Figure 13. When there was no introduction of infective insectvalues dependent on class); at hRJK, howeverd* values were
into a field, either becausg = 1 or6, = 1 (the latter not consid- similar for within-field reproduction and immigration situations,
ered here), all lost vectors were replaced by within-field reproprimarily becausal* was close to 1 for all classes at higIK.
When there were no within-field reproduction (case 0 versus 0.25),
there were only small differencesdihat mostP/K values, although
0.80 ° the transitional values af could be farther apart (Fig. 13). The
L rank ordering offi* for cases 0 and 0.25 depended on the value of

0.60 - ® Z*/P relative to 1 -8, —6,, as shown for the examples in Figure 13.
DISCUSSION
<Y 0.40 _ . _— : :
Modeling of plant virus epidemics. The continuous-time, de-
terministic, and compartmental model of Jeger et al. (18) was suc-
0.20 cessfully used here to evaluate theoretically the effects of trans-

mission class on plant disease epidemics. The model can be written
0.00 | L succinctly as a set of linked differential equations with parameters
. that have direct physical or biological meaning. With additional—
0.00 0.12 0.24 0.36 0.48 0.60 although not required—assumptions about the (fixed) size of the
In(R insect population, it was possible to determine analytical results
n( o)/lJ for steady-state values of disease incidence as a function of model
) i ) ) . i parameters (Appendix). We expanded on previous work (18) by
Fig. 11. Relationship between the basic reproductive nunfgre(quation 11), . ; . :
mean age of infectivity (U; equation 17), and exponential rate of disease ir‘#—etermmmg numencal solutions for a wide range of model pa_r_am-
crease at small values of tint for epidemics in Figures 5, 7, 8, 9, and 10 in ©ters and showing the effects of parameters on both transitional

which R, > 1. Straight line is the prediction from equation 16. and steady-state levels of disease for situations with and without
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Fig. 12. Plant disease incidence (d) versustime (t) for the four virus transmission classes based on the model for explicit vector migration (Model 11: equations 8

and 14 [or 15]) with the parameters and initial conditionsin Tables 1 and 2 at five combinations of vector emigration rate relative to the total insect population

(VIP), the fraction of immigrants that are infective (1 -6, —6,), and the proportion of lost inse¢fsom death and emigration) that are replaced by ‘birthy’ (
Curve labels i to v correspond to parameter values in Table 3 for Evaluation 1. Vector d®K3ity {.1, 0.2, 0.3, and 4.0 for the nonpersistent, semipersistent,
circulative-persistent, and propagative-persistent classes, respedtyéguation 11) is undefined for Model Il whép< 1.
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vector migration. Numerical solutions, with parameter values in basing the model in the current study on a relatively small number
Tables 1 and 2, yielded disease progress curves (Figs. 5 to 13) that of (linked) equations, we have shown that steady-state values of
are typical of many published epidemic data sets (4,22,30,35-37). disease incidence (and other variables) can be expressed in terms
Although other continuous-time compartmental models have beesf model parameters (Appendix) (18) or the basic reproductive
developed for virus diseases (6,13,23,27), these either have not beember R;) (equation 11). Predictions of steady-state values of
formulated generally enough to encompass the full range of vectatisease incidence, based on the equations derived by Jeger et al.
virus interactions characterizing nonpersistent, semipersistent, circ(t8), were found here to agree well with numerical solutions to
lative-persistent, and propagative-persistent transmission classi® equations (equations 8 and 9 [or 10] for Model | and equations
(28) or all four plant infection categoried,(L, S, andR) (Fig. 2) 8 and 14 [or 15] for Model 1l). Because of the complexity of the
and three vector-virus categories, (Y, andZ) were not consid- general model, however, transient behavior of the epidemics could
ered. The objectives of these cited studies did not focus on the cogenerally only be assessed with numerical methods, although at
parison of transmission classes, so such generalizations were wmallt, disease incidence could be approximated by an exponen-
necessary. Ferriss and Berger (8) did focus on a comparison tidl equation for Model | (Fig. 11).
transmission classes in an innovative study by using a stochasticThe nonpersistent viruses are different from the other viruses,
spatial-lattice discrete-time simulation model. Several other simulaespecially the persistent ones, because of the very short times for
tion and discrete-time models have been developed for specifacquisition and inoculation and the short latent and infectious pe-
virus diseases, with varying degree of detail, depending on th#ods in the vector (Table 1). In fact, the model developed here can
research objectives (9,11,33). In general, these latter simulatide further simplified, as an approximation, if one assumes that
models were used for very specific and detailed descriptions ofl@th n andt are infinite, meaning that the latent and infectious
particular system. In the classification system of May (26), thesperiods are 0. In the limit, one obtains the following equation for
would be labeled as tactical models. The model used in this papérfective vectors if one holdzp't fixed (=0).
however, would be classified as strategic in the May framework, OPO
because we used it to “provide a conceptual framework for the GHEEB
discussion of broad classes of phenomena” and not to describe =
one particular plant pathosystem in detail (26). The Ferriss and
Berger model (2,8) could also be considered strategic, since it d@ne can substitute equation 18 foin equation 8, thus eliminat-
not focus on a particular disease. However, their simulation agrg all differential equations for the vector population. Based on this
proach does not allow for easy representation in equation formagguation, the number of infective vectors per host plant is directly
making it more difficult to explore the general properties of theproportional to insect densitPAK) and related to infectious plants
system of interest. For instance, although computer simulatios) in a saturation-type curve mannef[{ + os]). Use of this
makes it relatively easy to generate population growth curves iapproximation produces epidemic curves similar to those shown
relation to many driving variables and parameters (9,11,33), this the graphs of this paper (L. V. Maddenpublished data). Mod-
approach rarely leads to the generic determination of conditioreling nonpersistent viruses in this way is analogous to the ap-
required for disease invasion (establishment) and persistence, g®aches taken by Madden et al. (23) and Marcus and Raccah (24)
well as the steady-state and asymptotic values of disease (17). By this virus class.

18
1+0s (18)
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Fig. 13. Plant disease incidence (d) versus time (t) for the four virus transmission classes based on the model for explicit vector migration (Model 11: equations 8
and 14 [or 15]) with the parameters and initial conditionsin Tables 1 and 2 at combinations of vector emigration rate relative to the total insect population (V/P)
and the proportion of lost insedfsom death and emigration) that are replaced by ‘birthy’ Ten percent of the immigrants are infective (@;— 6, = 0.1).
Curve labels correspond to parameter values in Table 3 for Evaluation 2. A single-number case label reéfitesgimty = 0; a two-number case label repre-
sentsV/P andy, wheny = 1. Because of the overlap of curves, not all curves are labeled on all graphs. Vector Bigfsisyl(1, 0.2, 0.3, and 4.0 for the
nonpersistent, semipersistent, circulative-persistent, and propagative-persistent classes, respgteiyesition 11) is undefined for Model Il whép< 1.
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Transmission classes and disease management. With the sup-
position that the parameter values in Table 1 were characteristic
for the four transmission classes, it was found that these classes
varied greatly in their epidemic behavior and in their sensitivity to
changesin model parameters. For instance, two or three of the trans-
mission classes could be easily identified based on epidemic re-
sponse to vector density (P/K) alone (Figs. 5 and 6). Although dis-
ease incidence increased with P/K for al classes, very high values
of P/K were required for the propagative-persistent viruses to ex-
hibit steady-state and transient values of d similar to those found
for the semipersistent and circulative-persistent viruses with very
low P/K, @l a nominal values of other parameters. The nonper-
sistent viruses were intermediate in terms of disease response to
changes in P/K. However, small changes in vector activity (¢) led
to very large changes in d for the nonpersistent viruses, but large
changes in @ had only a small effect on the propagative viruses.
The other classes were intermediate in terms of response to @ (Fig.
8). For the propagative viruses, any increase in opportunity for
inoculation of plants (by feeding on more plants per day) is ne-
gated by the decreasing probability of inoculation per plant visit.
Conversely, changes in vector mortality (a)—or mean lifetime

(L/a)—had no effect on nonpersistent viruses, only a little effec
on semipersistent viruses, and a pronounced effect on the pro
gative viruses (Fig. 7). This is because, with the long times to ac;-
quire and inoculate (on average) coupled with the long latent perid
in the vector, increasing the time vectors are in a field greatly in-

assessed in terms of the parame®#s a, andg. Based on model
results, reducing the number of vectors per plant (e.g., through the
use of insecticides, host resistance to the insect, and cultural prac-
tices) will have a large effect on propagative viruses and, to a
somewhat lesser extent, nonpersistent viruses (Fig. 5). However,
the reduction in vector density will have to be substantial to have
any noticeable effect on semipersistent and circulative viruses,
which may explain the difficulty in controlling epidemics of the
geminivirus African cassava mosaic virus in Africa (13). More-
over, reducing vector density will not be effective for nonpersis-
tent viruses if insect mobility (plants per dgy;is high (Fig. 8). It
is known that many insecticides can actually increase mobility of
insects (at least temporarily), as individuals move from plant to
plant to escape the insecticide (or find a suitable host) (31,34).
Such an increase in mobility will not interfere with the control of
the propagative viruses (Fig. 8) because of reduced time per plant
visit for a vector to transmit, but will be an obstacle for control-
ling nonpersistent viruses. For the persistent viruses, especially
the propagative ones, reducing the lifetime of vectors) (@ill be
a very efficient means of control, at any vector density (Fig. 7).
n the other hand, reducing the lifetime of vectors will have no
6([ect on nonpersistent viruses unless vector density is low—in
articular, killing the current vectors in a field will not be effective
new vectors are entering the field.
Increasing the resistance of the plant to the virus (21,29,37) can

creases the probability of all of these events occurring in individ2€ guantified through the parameters for the rate at which the vi-
ual vectors for propagative viruses. With short times for all ofUS moves through the laterg)and infectious periodsd) (4,6,
these processes with nonpersistent and semipersistent viruses (Taie @S Well as for the acquisitiok) @nd inoculationk) rates. Of

1; Figs. 1 and 3), the probability of all of these events occurring iSOUrSe, increasing resistance to plant feeding by the vector (inde-

high, even at large. It should be pointed out that small(large

pendent of the virus) could also affécandk; (42). Changindk,

1/a) here is analogous to the modeling situation of Ferriss aniad no long-term effect on viruses in any of the transmission

Berger (8), in which they found highwith propagative viruses.

classes, as quantified by steady-state (equations 12 and A3) and

Virus disease management approaches that affect vectors @symptotic values of disease incidence (equation 13) (Fig. 9). This
rectly (42), rather than the virus or vector-virus interaction, can bavas expected based on the minor role ¥adias in determining
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Fig. 14. Steady-state (equilibrium) values of disease incidence (d*; equation A3 with z* determined with equation A5) in relation to vector density (P/K) for the
four virus transmission classes based on the model for explicit vector migration (Model 11: equations 8 and 14 [or 15]) with parameters and initial conditionsin
Tables 1 and 2 at four combinations of vector emigration rate relative to the total insect population (V/P) and the proportion of lost insects (from death and emi-
gration) that are replaced by within-field reproduction (‘birthi§’; Ten percent of the immigrants are infective @;— 6, = 0.1). Curve labels correspond to
parameter values in Table 3 for Evaluation 2.

Vol. 90, No. 6, 2000 591



R, (equation 11); in fact, many theoretica epidemiology studies  any vector density and the propagative viruses at high vector den-
ignore the latent category to simplify the mathematics and focus  sity (Fig. 12, cases iii and v). Values of 8— 6, as high as 0.10

on steady-state values (1,10). However, k, did have a moderate ef- (Fig. 13) are still too large for effective control under the nominal
fect on transitional disease dynamics at small and moderate t, es- conditions here. In fact, any value of — 6, > 0 will lead to
pecially for those virus transmission classes with a short latent disease persistence (Fig. 14), but depending on the other condi-
and infectious period in the vector (e.g., nonpersistent viruses)  tions (parameters), reducing Br— 6, to close to 0—possibly by
(Fig. 9A); that is, decreasing k; (increasing the latent period inthe  eliminating infected plants in weeds and surrounding crops—should
plant), which can be accomplished through resistance, reduced dis- be effective for maintaining disease at a low level. With nonper-
ease development early in the epidemic. This is consistent with  Sistent viruses, however, such a reduction will be far less effective
the epidemiological result that re is inversely proportiona to the  if insect density in the field of interest is not low and no control of
latent period (a component of p [equation 17]) and directly prothe disease is done within the field, since insects can acquire and
portional to In®,) (equation 16) (5). In contrast kg results, de-  then transmit viruses so quickly.

creasing the time that plants are infectious (increakihgiad a Synopsis. The theoretical research presented here elucidating
fairly large effect on reducing transitional and steady-state disea$ée effects of transmission class on plant disease epidemics can be
values for all four transmission classes (Fig. 9). summarized through a consideration of a model epidemic. When

Changingk; andA had a differential effect on the four transmis- there is no vector migration or when the population of insects is
sion classes. In particular, reducing these two rates by 50% h#ee same globally as locally (Model §,increases exponentially
virtually no effect on the nonpersistent and semipersistent virus&rly in the transitional phase of an epidemic (wen0.05) if
(Fig. 9). This is because, with the high nominal rates for these twi§€ net reproductive numbeRd) (equation 11) is greater than 1.
classes (Table 1), the probabilities of acquisition and inoculatioAS Shown in Figure 11, the relative rate of increase &t these
per plant visit & andb [equations 3 and 5]) were about 1, even€a'ly timesre, is directly related td?, and the mean age when an
with a large reduction ik, and\. Conversely, changing these rates INdividual insect or plant is infectious, p (equation 17). The rela-
for the two persistent classes had a direct effect on disease qu_nshlp, although not exact, is well described by equation 16 at
velopment (Figs. 9D and 10), becaasendb are close to linearly 10W Ro- Both p andR, are directly related to easily interpreted
related to\ andk, at these lower values. Thus, effective control ofPArameters that characterize the transmission process, behavior of
nonpersistent viruses through resistance to acquisition or inocul e virus in the plant and insect, or vector population dynamics.

tion will require a much greater percentage of reduction in the a(fhheu?’egigﬁlsﬁ thlfei/'vn;ge exp%%%nlgal ?n%mfgﬁ .aexegii)maa?[gl
quisition/inoculation rates relative to the persistent classes. P e W 0 pp y

. .. assess the effects of the transmission process and disease control
Large differences could be seen among the four transmissi P

. - . X .Qﬁrategies on epidemics without the use of complicated nonlinear
classes (Table 1) in terms of epidemic responses to the m'grat"&ﬁferential-equation models (equations 8 and 9 [or 10]).

parameters of emigration rat€¢ ¢r V/P), fraction of lost vectors At (much) lonaer tim o ventually reach t
(from emigration aqd dgath) that are replaced py |mm|grant$§1 ~ state (d*;,lcd()afigegeby eqeua?tieoﬁ (?Lszj ?ore eéll?at)i/onesaAlezna:j ?A%?,d)c/)r
and fraction of the immigrants that are in _the infective @ —6,) approaches an asymptotic upper lindit)( roughly approximated
state (Model I1). Results depended heavily on whether or not Iogs equation 13. Both of these terms are directly relate®}tdhe
insects were replaced solely by ‘births’ (within-field reproduction;expression 1 —Ry)™ provides an especialy useful term to char-
¢ = 1) or some immigrantsh(< 1) and whether viruliferous in-  agterize Jong-term disease dynamics without the use of differential
sects were in the immigrant poéh < 1, so that 1 8, -8,>0) or  equations, because it is the upper limit for d* (equation 12) when
not @, = 1). For all transmission classes, disease developmepfant host mortality and regrowth (B) is nonzero but low. When B =
was slower when lost insects were replaced exclusively by ‘birthgjgay, a steady state cannot be achieved, but a final disease out-
(W = 1) than by infective immigrantsp(= 0) (Figs. 12 and 13). come is achieved that we have found numerically to be in the in-
The propagative viruses were very sensitive and the nonpersisteatval, 1 — (R,)™ < d,, < 1 (equation 13); d., quickly approaches 1
viruses were only slightly sensitive to ‘births’ versus immigrationas R, increases above 4.
(in the situation withv/P > 0). Because of the short times to ac- Between the early exponential and later steady-state (or as-
quire and inoculate, the nonpersistent viruses were little affectagiptotic) stages, there is a period in which predictions of d are
by the source of vectors (inside or outside the field). When immienly possible through numerical solutions of the differential equa-
gration represented a substantial fraction of the new insects intians (equations 8 and 9 [or 10]). Although, in some cases, espe-
field (@ < 0.5), epidemic results varied with 18— 0. For in-  cially when plant host and regrowth is 0, d increases in roughly a
stance, disease development was reduced, possibly to 0, when|alistic manner during part of this period, in most cases with 8 >
immigrants were virus free (18; —6, = 0) and increased to high 0/day, d somewhat overshoots its steady-state value during this
levels when immigrants were infective (B— 6, = 1) (Fig. 12).  transitional stage (Fig. 6A), before eventually stabilizing at d*.
The two persistent classes were most sensitive to this, primarily The situation is more complicated when the insect immigrants
because of the long times needed for a new vector in a field twe not in the same categories as the emigrants, such that explicit
acquire the virus and then inoculate a susceptible plant. Somewhatms for migration are needed (Model 11). In general, the increase
surprisingly, change iv/P had only a small effect on the epi- in d early in the epidemic is a mixture of exponential increase
demics for any transmission class when immigrants (with 10%rom the insects internal to the field and linear increase from im-
being infective) replaced lost vectors (Fig. 13, cases 0 to 1). Renigrating viruliferous insects (when d < 0.05). However, when the
sults for different values of/P depended more on the value of 1 —immigrants are al virus free (6, = 1), R, can still be defined and
0, — 06, relative to the fraction of infective insects in the total vec-the increase will be exponential. After the transitional stage of dis-
tor population Z/P) than on transmission class. esse development, represented by numerical solutions to equations
Because results were much more sensitivg smd 1 -0; — 6, 8 and 14 (or 15), d reaches a steady-state value (d*) when 3 >
than toV/P, the former two can be considered in more detail in0/day, which is determined based on the same parameters that pre-
terms of disease management. Obviously, when there are no idiiet d* for Model |, plus the terms for insect emigration rate (V),
migrants () = 1), management can focus on the other factors corfraction of lost insects replaced by immigrants (1 — W), and virus
sidered with Model I. In situations in which immigrants are anstatus of the immigrants (18; — 6,). Thed* values, determined
important source of vectors in crop plangs< 1), it is advanta- from equations A5 and A3, are lower than 1, and can be higher or
geous to reduce 1 6, — 6, to as close to 0 as possible for all lower than those found with Model | (Figs. 12 to 14). Because of
transmission classes, but especially for the circulative viruses #te complicated nature of equations A5 and A3, little insight is
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obtainable into epidemic behavior in relation to transmission or
other characteristics for Model |1 without use of numerical results.
Numerica solutions for Model 1l epidemics, as well as for the
trangtiona phase of Mode | epidemics, do considerably extend the
understanding we can have of the plant virus disease epidemic process.

APPENDIX

Model |. Based on equations 8 and 9, steady-state values of the
plant and insect population values can be derived (18). The steady-
state value of infective vectors (2), conditioned on 8 > 0/day, can
be written as

Bﬁb@ﬁ?% “a+ ] )ék +p[[k, +B]5
b(pgoun]gﬁ@k +B][k +B]+ agk, B %

in which the asterisk indicates the equmbrlum value, and alI other
terms are defined in Table 2. Equation A1 can aso be written more
succinctly as

_ AR -1
7= ) %“&D (A2)
%5 "c,a
inwhich
Cr+a(l-q) O
C, = agk,pr— Y 4
g N 5|
and

[0( +n]|3 r(] q)ék2+ﬁ][k3+ﬁ]
and R, is given by equatlon 11. Equation A2 clearly shows the
effect of R, on steady-state values, in that z* is only greater than O
if Ry > 1. The steady-state value of d (d*) is given by

dr=1-— P (A3)
B +bgz*
in which z* is determined from equation A1 when 3 > 0/day. Sub-
stitution of equation A1l for z* in equation A3 and algebraic ma-
nipulation results in the following simple expression for d*.

dr=_fol (A4)

At very small B, C,/C, = 0, resulting in 1 — (R,)™ as an approxi-
mation for d* (equation 12). Values of I*, s*, and y* can be de-
termined from the equations by Jeger et a. (18), with a substituted
for AT, and b for k;T.

Model 11. Equations for steady-state values of insect population
variables are much more complicated when there is explicit vector
immigration and emigration (equations 8 and 14 [or 15]). The
steady-state value of z when 3 > O/day is one of two roots of a
quadratic equation, specifically

-C, - /(¢ +4c,C)
-2C,

7= (A5)

in which C; to Cs are functions of the model parameters. These
functions are

C,= AGb+ Adb2 i + A1~ BAA, + A, AgD
= Agrab(a, +1) + A, AgD
Cs = AB+BAA

with the coefficients A, to As given by
Ok, @M@ p O
=0—2[M—10
0K, + Bk, +BO

A2:1+§1+\;§1—q1p)

n
_(1-w)(1-86,-6,)(V +aP)
Ay = K
A= (1-w)o,(v +aP)
K
_ v
A5 =a+n +B

Steady-state disease incidence (d*) is given by equation A3, but
with equation A5 substituted for z*. Other equations are given by
Jeger et d. (18).
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