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A B S T R A C T   

Crop models are complex with many parameters, which has limited their application. Here we present an 
approach which both removes the model complexity through reducing the parameter dimensionality through 
sensitivity analysis, and presents a subsequent efficient approach to model parameterisation using swarm opti-
misation. We do this for two key model outputs, crop canopy and yield, and for two types of observational data, 
hemispheric photographs and Landsat7 imagery. Importantly we compare the usefulness of these two sources of 
data in terms of accurate yield prediction. The results showed that the dominant model parameters that predict 
canopy cover were generally consistent across the fields, with the exception of those related water stress. 
Although mid-season canopy cover extracted from Landsat7 was underestimated, good agreement was found 
between the simulated and observed canopy cover for both sources of data. Subsequently, less accurate yield 
predictions were achieved with the Landsat7 compared to the hemispherical photography-based parametriza-
tions. Despite the small differences in the canopy predictions, the implications for yield prediction were sub-
stantial with the parametrization based on hemispherical photography providing far more accurate estimates of 
yield. There are, however, additional resource implications associated with hemispherical photography. We 
evaluate these trade-offs, providing model parametrization sets and demonstrating the potential of satellite 
imagery to assist AquaCrop, particularly on large scales where ground measurements are challenging.   

1. Introduction 

Crop growth models use empirical and mathematical relationships to 
simulate the growth and development of crops under diverse conditions, 
making them important tools to inform agricultural decisions (Soltani 
et al., 2020). Several crop growth models have been successfully used to 
assist sustainable crop production including DSSAT (Ngwira et al., 
2014), CROPWAT (Tsakmakis et al., 2018) and APSIM (Zhang et al., 
2022a). While these models are effective in simulating yield under 
various management practices (Choruma et al., 2021; Jing et al., 2021; 
Zhang et al., 2022b), their broader use has been restricted due to their 
complexity: they need a relatively large number of input parameters, 
most of which are difficult to obtain in practice. Given this complexity, 
the FAO devised a simple and resilient model, AquaCrop (Raes et al., 
2009), which requires a smaller number of intuitive input parameters. 

This model has been used in many studies to predict yield and irrigation 
requirements (Khabba et al., 2020; Wang et al., 2022) and has also been 
tested to be effective for a wide variety of crops, such as wheat (Toumi 
et al., 2016a,2016b), potato (Razzaghi et al., 2017; Wale et al., 2022), 
sunflower (Stricevic et al., 2011), tomato (Takács et al., 2021), maize 
(Greaves and Wang, 2016), and table grape (Er-Raki et al., 2021). Ac-
cording to the findings of all these studies, the AquaCrop model is able to 
reliably simulate responses to a variety of field management practices. 

The usefulness of processed-based models like AquaCrop is usually 
constrained by the fact that they are often calibrated for a specific 
circumstance and so may not be transferable to other case studies. For 
example, Paredes et al. (2015) found that uncalibrated, the AquaCrop 
model was unable to accurately forecast the yield and the biomass of 
soybeans in North China Plain since there was a noticeable tendency for 
under-estimation for both predictions with deviations of more than 27% 
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and 20%, respectively. Thus, areas where the model may be used can be 
expanded only by calibrating it across many sites with various sowing 
dates, seeding rates, fertilization programmes, and irrigation pro-
grammes. Given that AquaCrop is well suited for modelling crop pro-
duction and that AquaCrop is widely used in Morocco (Benabdelouahab 
et al., 2016), the creation of calibrated regional parameterization would 
be advantageous. 

A number of approaches have been used to calibrate the AquaCrop for 
a specific area. Most of these studies estimate the parameters by matching 
phenological observations to certain parameters and adopting default 
values for others (Abi Saab et al., 2021; Dirwai et al., 2021; Lu et al., 
2021). In many cases the observational field data was used to parame-
terize AquaCrop through a process of trial-and-error where data comes 
from several plots or fields and then the mean of the parameter values is 
used (Toumi et al. (2016a),(2016b)). This provides a simple but prag-
matic approach to calibration. More generally, process model parame-
terisation has been explored by a number of authors. The first step is often 
to use a sensitivity analysis to identify which parameters most influence 
the outcome of interest; these then become the focus of the parameter-
isation. Sensitivity analysis includes evaluating the local and global in-
fluence of individual parameters or combinations thereof. Local 
sensitivity analysis facilitates identifying parameters that have a direct 
effect on model predictions by examining the effect of minor changes in a 
single parameter on the model output. In contrast, global sensitivity 
analysis takes into consideration interactions and non-linear effects. 
Techniques such as Sobol indices(Nossent et al., 2011; Vazquez-Cruz 
et al., 2014; Xing et al., 2017a), Morris method (Morris, 1991a; Paleari 
et al., 2021; Specka et al., 2015), and FAST (McRae et al., 1982; Xu and 
Gertner, 2011) are frequently adopted. Building on the insights gained 
from sensitivity analysis, the next step is model parameterization. The 
advancement in parameterization techniques for crop growth models 
covers forcing, calibration, and updating methods, each contributing to 
the refinement and reliability of model predictions (Jin et al., 2018). 
Forcing methods leverage remote sensing and field measured data using 
algorithms like linear interpolation (Dhillon et al., 2020; Pelosi et al., 
2022) and wavelet methods(Hariharan and Kannan, 2014; Krishnan 
et al., 2023) to substitute missing or incomplete crop model simulations 
with information derived from observed or remotely sensed sources. 
Findings from Casa et al. (2012) and Morel et al.(2014) highlight the 
effectiveness of forcing techniques in overcoming limitations related to 
the lack of detailed knowledge about management practices or soil 
characteristics. Calibration involves comparing the model’s predictions 
or simulations to observed data and then adjusting the model parameters 
or inputs to reduce discrepancies between the model output and actual 
observations. Calibration is often performed using optimization tech-
niques to find the best combination of parameter values that minimizes 
the difference between model predictions and observed data (Jin et al., 
2016; Lyu et al., 2022). For example, Li et al. (2018) coupled the GLUE 
method and experimental field data to parametrise DSSAT-CERES model, 
the method showcased its accuracy in estimating wheat genotype pa-
rameters. Dong et al. (2013) introduced a VFSA optimization algorithm 
for LAI assimilation into the CERES-Wheat model, and demonstrated an 
improved accuracy, especially for LAI in winter wheat experiments. 
Lastly, updating methods refer to techniques that integrate observational 
data into the model to improve its accuracy and reliability. The goal is to 
adjust the model’s predictions in light of real-world observations, making 
it more consistent with the observed behaviour of the system. In the 
context of crop modelling, data assimilation can be used to repeatedly 
update crop model simulations, for example, when remote sensing data is 
available. Zhang et al. (2022) developed an ensemble Kalman filter 
(EnKF) data assimilation framework to assimilate plant and soil obser-
vations into the APSIM-Wheat model, and the results showed an 
improvement in crop development and yield simulations. In this paper we 
are concerned with calibration using optimisation. 

There are two key considerations for obtaining a parameterised 
model for any given circumstance or case study; i) data, in the form of 

observations, are needed for the key variables of interest (canopy cover 
and yield) across the growing season and once obtained, ii) an efficient 
optimisation procedure which is capable of considering the full model 
parameter space conditional to the particularities of study areas of in-
terest. One method for obtaining canopy cover measurements is though 
hemispherical handheld photography. The technique is based on a 
determination of how much sky is visible through the canopy, by cate-
gorising each pixel of the image as either belonging to the sky or to any 
plant obstructing object. Although this approach offers a direct way to 
assess canopy cover, it is labour-intensive, time-consuming, and requires 
specialised equipment. Remote sensing offers an alternative means of 
predicting canopy cover directly using dedicated software such as Sen2r 
(Ranghetti et al., 2020), or indirectly through vegetation indices (VIs). 
While remote sensing provides a cost-free method for estimating canopy 
cover expansion across multiple time and space scales, it is often affected 
by limiting factors, such as sensor failures and/or cloud cover obscuring 
satellite imagery. 

There are many optimization algorithms available, and these can be 
generally characterized as either local or global optimizations. Local 
methods use an iterative search beginning with the nominal value of the 
parameter but can become trapped in a local minimum and prematurely 
terminate the search (Poempool et al., 2018). Global optimization 
searches adopt mechanism to search a larger part of the search space and 
are more frequently used to parameterize crop models. Here, methods 
include particle swarm optimization (Kennedy and Eberhart, 1995), the 
fast simulated annealing (Szu and Hartley, 1987), and the Artificial bee 
colony (Akbari et al., 2010). Particle swarm optimization (PSO) has 
recently increased in popularity and has been used in a variety of ap-
plications, including the enhancement of crop yield estimate accuracy 
(Sabzzadeh and Shourian, 2020), and the assimilation of remotely 
sensed data into decision support systems (Wagner et al., 2020). It is 
appealing because of its ease of implementation and ability to quickly 
converge to a reasonably good solution compared to classic optimization 
algorithms, which have great search capability but poor convergence 
speed and computing efficiency (Xu and Yu, 2018). 

This study presents a methodological framework to determine case 
specific crop model parameterization. We use the Morris and FAST 
methods as preliminary steps to analyse the impact of different param-
eters on AquaCrop key responses, including canopy cover aboveground 
biomass, and yield. A key novelty here is that we assess the utility of 
canopy cover estimates obtained from two distinct sources (i.e., Landsat 
7 satellite imagery and hemispherical photographs) for calibrating the 
AquaCrop canopy simulation. Unlike traditional calibration methods 
reliant on trial and error, our approach is a stepwise automatic param-
eterisation. In support of our framework, we enhanced the Matlab 
implementation of AquaCrop by incorporating a soil fertility compo-
nent. We demonstrated our framework for a semi-arid region in 
Morocco. 

2. Material and methods 

2.1. Aquacrop model 

AquaCrop is a multi-crop water driven model that evolved from the 
FAO Irrigation Drainage Paper 33 (Doorenbos et al., 1979). The model 
avoids the confounding effect of non-productive water consumption by 
separating the actual evapotranspiration (ET) into crop transpiration 
(Tr) and soil evaporation (E). AquaCrop uses a comparatively small 
number of parameters to assess the effect of environment and manage-
ment practices on crop growth. The final crop yield is estimated through 
four steps: i) simulate the foliage development represented by the green 
canopy cover (CC); (ii) calculate the crop transpiration (Tr) using the 
reference evapotranspiration (ETo) and the crop coefficient; (iii) pro-
duce the above-ground biomass (B) as a function of the cumulative 
amount of water transpired; and (iv) simulate the final crop yield by 
multiplying biomass (B) with a Harvest Index (HI). Details can be found 
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in Raes et al. (2009) and Steduto et al. (2009). In this study, the MATLAB 
version of the AquaCrop model (AquaCrop-OS) developed by Foster 
et al. (2017) which is available at (www.aquacropos.com) was used. The 
soil fertility feature is not implemented in AquaCrop AOS v6.0a. Based 
on AquaCrop reference manual (Steduto et al., 2009), a code to account 
for the influence of soil fertility on canopy cover growth (KSCGC), 
maximum canopy cover (KSCCX), and biomass water productivity 
(KSWP∗ ) was integrated to AquaCrop as defined in Eqs. 1, 2 and 3 
respectively. 

KSCGC =
eSrel fCGC − 1
efCGC − 1

(1)  

KSCCX =
eSrelfCCX − 1
efCCX − 1

(2)  

KSWP∗ =
eSrel fWP∗ − 1
efWP∗ − 1

(3)  

where Srel is the relative stress level in the studied fields. The coefficients 
fCGC, fCCX and fWP∗ are the shape factors describing the effects of soil 
fertility on canopy growth, maximum canopy cover and biomass water 
productivity, respectively. 

2.2. Study and data description 

2.2.1. Study site 
Field experiments were conducted at an irrigated zone of the Haouz 

plain during two successive growing seasons: 2002–2003 and 
2003–2004 by Toumi et al. (2016a),(2016b). The area is located 40 km 
east of Marrakech (Fig. 1). In season 2002–2003, three field were 
investigated (we refer to these as A1, A2 and A3) and in season 
2003–2004, six fields were investigated (referred hereafter as B1, B2, 
B3, B4, B5 and B6). In this area, the irrigation scheduling is managed by 
ORMVAH (Office Regional de Mise en Valeur Agricole du Haouz), a 

regional agricultural advisory body for the management of 
hydro-agricultural equipment and water resources for agricultural use. 
The region’s climate is characterized as semi-Mediterranean with an 
average annual precipitation of about 240 mm falling between 
November and May. 

The red parcels are from season 2003–2004 and the grey parcels are 
related to 2002–2003 growing season. 

2.2.2. Data description 
AquaCrop requires daily measurements of maximum and minimum 

temperatures, precipitation, and reference evapotranspiration as 
weather input variables. We sourced Weather data from Agafay weather 
stations (31.47 ◦N, 8.21 ◦W). The maximum and minimum air temper-
atures in 2002–2003 were 38.1 and −0.4 ◦C respectively while the 
comparative temperatures were 38.4 and −2.04 ◦C in 2003–2004 (for 
more details see Appendix A, Fig. A.1). Data collected from the studied 
fields included canopy cover (CC), aboveground biomass and yield 
values. Canopy cover was measured using hemispherical canopy pho-
tographs for two seasons: Each field was differently managed in terms of 
sowing date and irrigation schedule. Details are given in Table 1. 

For model calibration and validation, we required data on canopy 
cover and yield. We used two approaches to estimate our first state 
variable (CC). In the first method, the canopy cover of our calibration 
sites was measured over the growing season using hemispherical canopy 
images taken with a Nikon Coolpix 950 and FC-E8 fish-eye lens con-
verter with a field of view of 183 degrees by Toumi et al. (2016a), 
(2016b). Following image acquisition, the CAN eye software was used 
for image analysis. In the pre-processing stage, all images were con-
verted to grayscale, using 256 levels of intensity, and then transformed 
into binary format to distinguish between black and white pixels. Sub-
sequently, the image with the optimal contrast between the canopy and 
the sky was selected. This selection process aimed to identify the image 
with the least number of saturated pixels, ensuring the best represen-
tation of the canopy-sky interface. The images were then classified into 

Fig. 1. Location of the study area showing the study fields in which irrigated wheat was grown.  
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black and white bitmaps using the CAN EYE software and canopy cover 
was expressed as percentages. More details about this process are pro-
vided by Khabba et al. (2009). In the second approach, free atmo-
spherically corrected satellite imagery was extracted from the Landsat7 
ETM+ sensor and processed it using GEE Python API (Gorelick et al., 
2017) to calculate the normalized difference vegetation index (NDVI). 
Landsat 7 provides medium spatial resolution of 30 m images with a 
revisit time of 16 days. The image collections are created with the 
Landsat Ecosystem Disturbance Adaptative Processing System (LEDAPS) 
algorithm (Schmidt et al., 2013) and contain 4 visible bands (blue, 
green, red and near infrared), two short-wave infrared bands (SWIR1, 
SWIR2) and one thermal infrared band (TIR) as shown in Table 2. 

The automated workflow for computation of the NDVI started with 
an extraction of an image collection covering the crop growth cycle of 
our calibration sites. A bitmask band was used to mask pixels that 
contain cirrus and high clouds, then a buffer of 30 m was applied to 
avoid the edges that mislead the calculation of NDVI values (Vannoppen 
and Gobin, 2021). 

We used the formula by Tenreiro et al. (2021) to estimate canopy 
cover from Normalized Difference Vegetation Index (NDVI). Tenreiro 
et al. (2021) derived the formula from a meta-analysis incorporating 
data from 19 studies, including the significant study conducted by 
Er-raki et al. (2007) focusing on the Tensift Al Haouz region and aligns 
with our study area. The derived formula, specifically tailored for wheat 
and exhibits a statistically significant fit and reasonable accuracy, as 
evidenced by an R-squared value of 0.71 and an RMSE of 14.2. Both 
coefficients in the model have been verified to be statistically significant 
at the 5% level, providing robustness to the derived equation. 

CC = 97.368NDVI − 4.942 (4) 

We refer to these measures of CC as referred hereafter as CCL7. To 
estimate grain yield, plants were sampled from five quadrates of size 
0.5 m×0.5 m selected randomly from across the field. From each 
quadrate, subsamples of plants were selected at random, and the number 
and weight of grains were measured (Table 3). 

2.3. Sensitivity analysis methods 

2.3.1. Morris 
Morris (1991b) established the elementary effects method, which 

was further refined by Campolongo et al. (2007), to determine the model 
parameters (and their interactions) that most influences the output of 
interest. This method is suitable for models with a large number of pa-
rameters. For a model with k independent inputs. The input space (Ω) is 
discretized into a number of equal segments of size Δ. The ith input 
factor’s elementary effect is defined as: 

EEi =
[Y(X1, X2, …, Xi−1, Xi + Δ, …, Xk ) − Y(X1, X2, …, Xk ) ]

Δ
(5) 

As a result, each EEi is a measure of the local variation of the model 
response Y in response to a change in the related model parameter. The 
Elementary effects distribution Fi is determined for the ith input factor 
by randomly sampling different parameters (X)from Ω. Morris’ 
approach computes two sensitivity measures: the mean (μ) and the 
standard deviation (σ) of the sensitivity measure.A significant standard 
deviation σ indicates that the input has a nonlinear effect or interacts 
with other inputs, while large μ indicates that the overall effect of that 
input on the output is greater. Certain effects may cancel out when 
calculating μ, resulting in a low mean value for even a significant 
component. To prevent such Type II errors, Campolongo et al. (2007) 
advocated substituting μ∗ for μ, which is defined as an estimate of the 
mean of the distribution of the elementary effects’ absolute values. 
Morris’ measures for the ith input are defined as: 

μi =
1
r

∑r

j=1
EEj

i (6)  

σ2
i =

1
r − 1

∑r

j=1
(EEj

i − μ)
2

(7)  

μ∗
i =

1
r

∑r

j=1

⃒
⃒EEj

i

⃒
⃒ (8) 

Table 1 
Sowing and irrigation schedule for the studied fields (taken from Toumi et al. 2016a,2016b). Fields A1, A2, A3 were irrigated with 30 mm per event, while fields B1, 
B2, B3, B4, B5, B6 received 60 mm per irrigation event.  

Parcel ID Sowing dates Irrigation dates Total irrigation  
amount (mm) 

1st 2nd 3rd 4th 5th 6th 

A1 17th December 2002 28th January 2003 22nd February 2003 10th April 2003     90 
A2 11th January 2003 01st February 2003 21st February 2003 14th March 2003 24th March 2003 07th April 2003 24th April 2003  180 
A3 14th January 2003 04th February 2003 20th February 2003 14th April 2003 21st April 2003    120 
B1 21st November 2003 20th January 2004 23rd February 2004 01st April 2004     180 
B2 21st November 2003 16th January 2004 17th February 2004 28th March 2004     180 
B3 15th December 2003 20th January 2004 15th February 2004 17th March 2004     180 
B4 19th December 2003 18th January 2004 24th February 2004 21st April 2004     180 
B5 20th December 2003 16th January 2004 16th February 2004 26th March 2004     180 
B6 24th December 2003 26th January 2004 21st February 2004 27th March 2004     180  

Table 2 
Landsat 7 band specifications.  

Band Spatial resolution 
(m) 

Wavelength 
(μm) 

Description 

B1  30 0.45 – 0.52 Blue 
B2  30 0.52 – 0.60 Green 
B3  30 0.63 – 0.69 Red 
B4  30 0.77 – 0.90 Near infrared (NIR) 
B5  30 1.55 – 1.75 Shortwave infrared 1 

(SWIR1) 
B6  60 10.40 – 12.50 Thermal infrared (TIR) 
B7  30 2.08 – 2.35 Shortwave infrared 2 

(SWIR2)  

Table 3 
Average aboveground biomass and yield in the study area with the range of measured values given in brackets.  

Season 2002–2003 2003–2004 

Parcel ID A1 A2 A3 B1 B2 B3 B4 B5 B6 
Biomass (t ha−1) 6.02 

[5.6–6.3] 
4.58 
[4.2–5.2] 

1.97 
[1.5–2.2] 

6.5 
[6.2–7] 

4.85 
[4.5–5.3] 

5.04 
[4.7–5.3] 

6.67 
[6.4– 6.9] 

2.91 
[2.5–3.2] 

5.01 
[4.7–5.2] 

Yield (t ha−1) 2.76 
[2.5–3] 

2.09 
[1.8–2.2] 

0.9 
[0.7–1] 

2.99 
[2.5–3] 

2.23 
[2–2.5] 

2.29 
[2–2.5] 

3.26 
[3–3.5] 

1.32 
[1–1.5] 

2.26 
[2–2.5]  
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Where r is the number of trajectories constructed from the sampling of X 
from Ω and EEj

i indicates the elementary effects relative to the ith factor 
computed along trajectory j. 

A qualitative parameter ranking based on the Morris technique was 
established as the first step of the AquaCrop model’s SA. Morris analysis 
samples were generated within the defined sample using the Latin Hy-
percube sampling design. In practice, the number of trajectories r should 
be as large as possible, as larger trajectories values provide a more 
complete coverage of the parameter space and a lower uncertainty 
associated with the estimated sensitivity indices (Ciric et al., 2012). r =
50 trajectories was applied, which is the maximum value suggested by 
Campolongo et al. (2007) to guarantee a high coverage of the input 
space. When all 36 model parameters were evaluated, a total of 50 
trajectories needed a maximum of n = 1850 model evaluations. 

2.3.2. Fourier Amplitude Sensitivity Test (FAST) 
First-order sensitivity indices measure the variance created by a 

single parameter in variance-based methods. Cukier et al. (1973) 
developed the Classical FAST method. FAST samples the input param-
eter space with a transformation function. The transformation function 
for FAST sampling is defined as: 

xi = (0.5 +
1
π[arcsin [sin(wis + ρi)])ki (9)  

where xiis the ith parameter, s is the sampling range with s ∈ [ −π, π], ρi is 
a random phase shift parameter marking the starting point of the search 
curve, ρi ∈ [0, 2π], wi (i = 1,., k) is the individual assigned integer fre-
quency of parameter xi, and ki is a scaling factor to scale the value of the 
transformation function that lies between 0 and 1 to the appropriate 
parameter range. Since the transformation function is periodic, a sam-
pling range of 2π is sufficient for decomposition. The first-order sensi-
tivity indices (Si) describe the major effects of parameters by calculating 
how the input variance contributes to the overall output variance. 
Saltelli et al. (1999) improved the FAST approach to generate first order 

Table 4 
List of the parameters from AquaCrop that were investigated in the sensitivity analysis with published lower and upper bounds where available and associated 
references.  

Name Definition Unit Lower 
bound 

Upper 
bound 

References 

Input 
parameters        

gEme Time from sowing/transplanting to emergence Days/GDD’s  63  114 Toumi et al. (2016a), 
(2016b) 

gZx Time from sowing/transplanting to maximum root development Days/GDD’s  484  616 Iqbal et al. (2014) 
gYld Time from sowing/transplanting to start of yield formation Days/GDD’s  600  780 -a 

gSen Time from sowing/transplanting to start of canopy senescence Days/GDD’s  800  1000 - 
gMat Time from sowing/transplanting to physiological maturity Days/GDD’s  1400  1500 - 
gFlwDur Duration of flowering Days/GDD’s  100  200 Vanuytrecht et al. (2014) 
gYldDur Duration of yield formation Days/GDD’s  300  600 - 
CCX Maximum fractional canopy cover size -  0.73  0.99 - 
CDC Canopy decline coefficient GDD/day  0.004  0.0067 - 
CGC Canopy growth coefficient GDD/day  0.005  0.0093 - 
Zn Minimum effective rooting depth Metres  0.1  0.39 Toumi et al. (2016a), 

(2016b) 
Zx Maximum effective rooting depth Metres  0.55  2.4 Toumi et al. (2016a), 

(2016b) 
sZsp Shape factor describing the decreasing speed of root expansion over time -  10  19 Xing et al. (2017) 
WxTopZ Maximum water extraction at the top of the root zone m3 m−3 

day−1  
0.0189  0.048 Xing et al. (2017) 

WxBotZ Maximum water extraction at the bottom of the root zone m3 m−3 

day−1  
0.0056  0.012 Vanuytrecht et al. (2014) 

cdAge Decline of crop coefficient due to ageing of the canopy % day−1  0.21  0.39 Xing et al. (2017) 
Kcb Maximum crop coefficient when canopy is fully developed -  0.77  1.43 Xing et al. (2017) 
Wp Water productivity normalised for reference evapotranspiration and atmospheric 

carbon dioxide 
g/m2  11  22 Xing et al. (2017) 

Wpy Adjustment of water productivity parameter in yield formation stage % of WP  75  125 Silvestro et al. (2017) 
Hi0 Reference harvest index -  0.32  0.61 Xing et al. (2017) 
exF Excess of potential fruits that is produced by the crop %  70  130 Xing et al. (2017) 

dxHi0 Maximum possible increase in harvest index above reference value %  10  19 Xing et al. (2017) 
gMnB Minimum number of GDD’s required for full biomass production GDD’s  13  15 - 
Aer Water deficit below saturation at which aeration stress begins to occur %  3.5  6.5 Xing et al. (2017) 
pExpUp Upper soil water depletion threshold for water stress effects on canopy expansion -  0.14  0.26 Upreti et al. (2020) 
pStmUp Upper soil water depletion threshold for water stress effects on stomatal control -  0.455  0.845 Upreti et al. (2020) 
pSenUp Upper soil water depletion threshold for water stress effects on canopy senescence -  0.49  0.91 Upreti et al. (2020) 
pPolUp Upper soil water depletion threshold for water stress effects on crop pollination -  0.455  1 Upreti et al. (2020) 
pExpLo Lower soil water depletion threshold for water stress effects on canopy expansion -  0.445  0.845 Upreti et al. (2020) 
pStmLo Lower soil water depletion threshold for water stress effects on stomatal control -  0.7  1 Upreti et al. (2020) 
pSenLo Lower soil water depletion threshold for water stress effects on canopy senescence -  0.7  1 Upreti et al. (2020) 
pPolLo Lower soil water depletion threshold for water stress effects on crop pollination -  0.7  1 Upreti et al. (2020) 
sExp Shape factor describing water stress effects on canopy expansion -  2.1  3.9 Upreti et al. (2020) 
sStm Shape factor describing water stress effects on stomatal control -  1.75  3.25 Upreti et al. (2020) 
sSen Shape factor describing water stress effects on canopy senescence -  2.1  3.9 Upreti et al. (2020) 
sPol Shape factor describing water stress effects on crop pollination -  0.7  1.3 Upreti et al. (2020) 
Output 

responses        
Cc Fractional canopy cover -      
Bio Accumulated aboveground biomass Kg/ha      
Yield Crop yield ton/ha       

a These bounds were adjusted from the literature values to account for the fact we used a based temperature of 5 ◦C (which is often adopted for Wheat grown in 
Northern Africa) as opposed to the more standard base temperature of 0 ◦C. 
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(Si) and total sensitivity indices (TSi) named Extended FAST that does 
not only account for an input’s variability but also the variance caused 
by other parameters. While there is no broad agreement on the appro-
priate cut-off value for parameter significance, first-order index value of 
0.01 is commonly used to differentiate sensitive from insensitive pa-
rameters, i.e. parameters with smaller indices than 0.01 contribute less 
than 1% of the variation in the output and are thus deemed 
non-influential. 

2.3.3. Sensitivity analysis strategy 
A total of 36 AquaCrop parameters (Table 4) were identified as 

relevant for the calibration of the canopy cover, biomass, and yield 
predictions. The literature was reviewed to identify plausible ranges of 
the model parameters, then Morris method was used to screen out pa-
rameters with marginal effects and to identify a subset of relevant model 
parameters. Finally, the Fourier Amplitude Sensitivity Test (FAST) 
method was implemented to quantify both the first and higher order 
parameter sensitivities on above ground biomass (AGB), canopy cover 
(CC) and yield for wheat crops in the nine study fields. The sensitivity 
analysis was implemented in MATLAB (MathWorks Inc., 2020). 

2.4. Stepwise model parameter optimization 

Parcels A1 – A3 were used to calibrate the model and parcels B1 – B6 
served as our validation set. A two-step calibration approach was 
adopted by first fitting the canopy cover and then the yield. Both steps 
use particle swarm optimization. Each optimization phase fits only the 
parameters that were found to be relevant for that phase in the sensi-
tivity analysis. The PSO optimization started by randomly allocating the 
initial position and velocity of the optimizer. Parameters were allowed 
to take values within a range not exceeding 20% of the lower and upper 
bounds we found in the literature (see Table 4). Then, an executable 
MATLAB file was run to simulate the canopy cover from input data 
including weather, soil, crop, and management data and taking into 
account the effect of soil fertility stress on both canopy cover and yield 
outputs. The optimization searches the parameter space aiming to 

minimize the objective function which we defined as the sum of squared 
differences between the observed and simulated measures. 

For the canopy cover fitting, we used two objective functions, one 
using the CCHPi canopy estimates and the other using CCL7i . The con-
structed objective functions are given by: 

JHP =
∑p

j=1

∑n

i=1
( CCSi − CCHPi )

2 (10)  

JL7 =
∑p

j=1

∑n

i=1
( CCSi − CCL7i )

2 (11)  

where n is the number of measurements, p is the number of calibration 
sites, CCSi is the simulated canopy cover, CCHPi and CCL7i are the esti-
mated canopy cover using the hemispherical photographs and Landsat7, 
respectively. We then took each of these parameter sets forward to the 
second stage of yield fitting where our objective functions were the sum 
of squared differences between model and measured yield. This resulted 
in two sets of model parameters. The stepwise model parameterization 
deliberately excluded biomass fitting as our objective was to create an 
easily transferable and resource-efficient approach. Recognizing the 
challenges associated with obtaining accurate biomass measurements, 
the focus was placed on canopy cover (CC) data from diverse sources, 
such as hemispherical photographs (HP) and Landsat 7 (L7). A 
comprehensive conceptual framework illustrating the described meth-
odology is presented in Fig. 2. 

2.5. Model evaluation 

The performance of each parameter set was evaluated by predicting 
the responses for the six validation fields (B1, B2, B3, B4, B5 and B6) and 
then calculating four performance metrics. These were the coefficient of 
determination (R2) which expresses the degree of collinearity between 
the observed and simulated data, the normalized root mean square error 
(NRMSE), the Nash and Sutcliffe modelling efficiency (EF) as a model 
performance indicator (Nash and Sutcliffe, 1970) and the Willmott’s 

Fig. 2. Conceptual framework of the sensitivity analysis and the stepwise parametrisation of AquaCrop.  
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index of agreement (D-index). These are defined as follows: 

R2 =

⎛

⎜
⎝

∑n
i=1(Oi − O)(Pi − P)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Oi − O)
2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Pi − P)
2

√

⎞

⎟
⎠

2

# (12)  

NRMSE =
100
O

[∑n
i=1(Pi − Oi)

2

n

]0.5

# (13)  

EF = 1 −

∑n

i=1
(Oi − Pi)

2

∑n

i=1
(Oi − O)

2
# (14)  

D − index = 1 −

∑n
i=1(Pi − Oi)

2

∑n
i=1(|Pi − O| + |Oi − O|)

2 # (15)  

where n is the number of measurements, Pi is the simulated value, Oi is 
the observed value, O is the observed mean value and P is the average of 
simulated data. A good agreement between measured and simulated 
data is indicated by NRMSE values near to zero. On the other hand, 
when the EF values are near to 1, the model’s performance is considered 
satisfactory. 

3. Results 

3.1. Sensitivity analysis 

3.1.1. Morris method 
The five most influential parameters for the canopy cover, biomass 

and yield responses (as identified by the main effect μ*) are ranked in  
Table 5. Only those with μ*greater than 0.1 were ranked. The number of 

non-influential factors differs slightly from one field to another. Ten 
non-sensitive factors were identified for yield, 6 for aboveground 
biomass and 12 for canopy cover as shown in Table 6. 

The yield sensitivity analysis revealed that the most sensitive pa-
rameters for most of the fields were the normalized water productivity 
(Wp) and the reference harvest index (Hi0). Parameters related to root 
development (Zx, Zn, WxTopZ, WxBotZ), crop phenology (gYld), crop 
transpiration (Kcb) and water stress (pPolLo, pExpLo) exhibited high 
interactions between each other. Aboveground biomass was most sen-
sitive to water productivity (Wp) and other parameters related to crop 
transpiration and development (Kcb, CGC). The Morris results for the 
canopy cover indicated that the parameters related to root development 
(WxTopZ, WxBotZ) were most sensitive for wheat grown in the first 
season. The canopy cover was most sensitive to crop development and 
phenology parameters (CDC, gSen) in the second growing season 
(2003–2004). 

3.1.2. FAST method 
First order sensitivity indices were calculated for the remaining input 

parameters from the Morris step using FAST method. Fig. 3 illustrates 
the main effect sensitivity index time series for CC in days after sowing. 
The results show that gEme, gMat, CGC and WxBotz were the most sen-
sitive parameters for the studied parcels. The canopy growth coefficient 
(CGC) and the time from sowing to emergence (gEme) were sensitive at 
the beginning of the season while the canopy decline coefficient (CDC), 
the time from sowing to maturity and senescence (i.e., gMat, gSen) were 
more influential at the end of the season. Finally, the most water stress 
sensitive parameters in mid-season were related to the stomatal control 
(pStmLo), while the canopy expansion and senescence water stress pa-
rameters (i.e., pExpLo, pSenUp) were more sensitive at the beginning of 
the season. 

Aboveground biomass FAST analysis findings are displayed in Fig. 4. 

Table 5 
The rank order of the mean of elementary effects (μ*) for the Morris sensitivity analysis. Increasing ranks imply reduced sensitivity with the parameter ranked one the 
most sensitive (See Table 4 for definitions).  

Output response Input parametersa Parcels 

A1 A2 A3 B1 B2 B3 B4 B5 B6 

Yield Wp 1 1 1 1 1 1 1 1 4 
Hi0 2 2 2 2 2 2 2 2 5 
gYld 3 5 -b - - - - - 1 
CGC 4 4 4 5 4 4 4 3 - 
pExpLo 5 3 3 - - 3 3 4 - 
Kcb - - 5 3 3 5 5 5 - 
Wpy - - - 4 5 - - - - 
gEme - - - - - - - - 2 
pStmLo - - - - - - - - 3 

Biomass Wp 1 3 3 1 1 1 2 1 1 
CGC 2 2 4 3 3 3 3 3 4 
CDC 5 - - 4 4 - - 4 - 
Kcb 4 4 - 2 2 5 5 5 5 
WxBotZ - - - - - 4 4 - 3 
WxTopZ - 5 1 - - - - - - 
pSenUp - - 5 - - - - - - 
gSen - - - 5 5 - - - - 
pExpLo 3 1 2 - - 2 1 2 2 

Canopy cover CDC 2 1 4 1 1 2 2 1 - 
gSen 4 5 - 2 2 1 5 4 - 
gMat 3 4 2 4 4 - 3 3 5 
gEme - - - - - - - - 1 
CCX - - - 5 - - - - - 
Zx 5 - - 3 3 5 1 2 - 
WxTopZ 1 2 1 - - 3 4 5 4 
WxBotZ - 3 3 - - 4 - - - 
pExpLo - - 5 - - - - - - 
pStmLo - - - - - - - - 2 
pStmUp - - - - - - - - 3 
Zn - - - - 5 - - - -  

a Most sensitive parameters for all parcels. 
b parameter is not ranked among the five most sensitive parameters. 
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The results showed that the crop phenological parameters (i.e., gEme, 
gMat, gSen), the canopy development parameters (i.e., CGC, CDC, CCX, 
Kcb) and the biomass production parameters (i.e., Wp, Wpy) were the 
common sensitive parameters for the investigated parcels. The time 
from sowing to emergence (gEme) was sensitive at the beginning of the 
season and its sensitivity decreased gradually over time. Meanwhile, the 
time from sowing to both senescence and maturity was only sensitive at 
the end of the season. The parameters related to the canopy expansion 
and the biomass production (i.e., CGC, Wp) were influential during the 
whole season period. While the canopy decline coefficient (CDC) and the 
maximum water extraction at top and bottom of the root zone (WxTopZ, 
WxBotZ) were mostly influential and the end and the mid-season 
respectively. 

The SA results for yield (Fig. 5) showed that the most sensitive pa-
rameters were the normalized water productivity (Wp), the reference 
harvest index (Hi0), the maximum canopy cover coefficient (Kcb), the 
Adjustment of water productivity parameter in yield formation stage 
(Wpy), the canopy growth coefficient (CGC) and the Lower soil water 
depletion threshold for water stress effects on canopy expansion (pEx-
pLo). Overall, the yield analysis showed that the reference harvest index 
(Hi0) and the normalized water productivity (Wp) were sensitive for all 
parcels. 

3.2. Optimization 

3.2.1. Canopy cover 
For the calibration set (A1 – A3), simulated and measured CC that 

resulted from the two fits (one based on hemispherical photography, the 
other on remote sensing) were in good agreement (Table 7). When CC 
was simulated based on hemispherical photography predictions 
(PSOHP), the estimated canopy cover CCHP corresponded extremely well 
with the observed CC with R2 values >0.98, low estimation errors 
(6.39% NRMSE), high D-index (>0.99), and D-index (>0.98). The 
remote sensing-based optimization (PSOL7) in the calibration set 
revealed a similar but less precise match between observed and simu-
lated canopy cover values compared to PSOHP with an R2, NRMSE, D- 

index and EF of 0.72, 28.97%, 0.9 and 0.71 respectively. 
The observed canopy cover from Landsat7 seems to be higher than 

that derived from hemispherical imagery at the beginning of the season 
as shown in Fig. 6. This induced PSOL7 to have an earlier crop emergence 
and a higher canopy growth coefficient values (gEme= 47.25, 
CGC=0.011) than PSOHP (gEme= 98.56, CGC= 0.01) as indicated in 
Appendix B, Table B.1. In addition, a strong canopy decline coefficient 
(CDC= 0.0049) was identified in PSOHP, resulted in a rapid drop of the 
canopy and lesser growing degree days to reach the maturity (gMat =
1472.10), while a lesser CDC (CDC = 0.004) was observed in PSOL7, 
resulted in a delayed maturity of the crop (gMat = 1500). For complete 
model parametrization sets, see Table B.1 in Appendix B. 

The validation set revealed that canopy cover predicted using 
hemispherical photographs led to better model parametrization 
compared to Landsat7. Overall, the observed and simulated canopy 
cover were in good agreement, as shown by low NRMSE, and high R2, D- 
index and EF values in Table 7. 

3.2.2. Yield 
Winter wheat yields measured in the field experiments ranged from 

0.9 t/ha to 3.26 t/ha, while simulated values using hemispherical pho-
tographs and remote sensing parametrizations ranged from 1.14 t/ha 
and 1.29 t/ha to 3.9 t/ha and 3.8 t/ha, respectively as shown in Fig. 7. 
The R2 between measured and simulated yield using PSOHP and PSOL7 in 
the calibration dataset was equal to 0.89 and 0.99 (Table 8). Overall, the 
application of PSO with hemispherical and Landsat7 extracted canopy 
cover simulated the yield with low estimation errors and high efficiency 
in the calibration set. In the validation set, hemispherical photography- 
based parametrization produced better yield estimates (R2=0.44, D- 
index= 0.75, EF=0.04) and lower estimation errors (NRMSE= 25.4%) 
compared to the other approach (i.e., PSOL7). It is important to note that 
while simulating yield using PSOL7, a negative EF was found, indicating 
that the mean of the observations gives a better prediction than the 
model. 

4. Discussion 

4.1. Insights from Morris and FAST sensitivity analysis of AquaCrop 
parameters 

Many research studies have calibrated AquaCrop using field data 
(López-Urrea et al., 2020; Wellens et al., 2022). However, most of them 
have fine-tuned the parameters using trial and error. We present a 
practical method for parameterizing AquaCrop using a two-step opti-
mization; first by selecting the set the influential parameters then fitting 
the canopy cover and then the yield. 

To inform our optimisation, we used Morris and FAST sensitivity 
analyses to determine the most influential parameters of AquaCrop. 
Many studies have demonstrated that just a few parameters out of the 
model’s large number have a substantial influence on the model’s output 
(DeJonge et al., 2012; Sarrazin et al., 2016). DeJonge et al. (2012) 
performed both Morris and Sobol variance-based methods on 
CERES-Maize input parameters affecting the crop growth and found that 
while considering the anthesis day after planting (ADAY) output, only 
two out the model parameters were sensitive for both full and limited 
irrigation treatments. Our results agree with this observation. We 
discovered that only 24 out of 36 model parameters influenced the 
canopy cover significantly and only 26 for the yield. Moreover, our re-
sults showed that Morris and FAST do not always agree on the priority 
ranking of a parameter. As an example, Morris prioritized the time from 
sowing to start of yield formation (gYld) for yield prediction, but the 
lower soil water depletion threshold for water stress effects on stomatal 
control (pStmlo) was found to be the most influential parameter when 
using the FAST method for the parcel B6. This finding aligns with 
Confalonieri et al. (2010) who analysed different sensitivity analysis 
outcomes of the rice crop model WARM and concluded that in nonlinear 

Table 6 
Non-influential parameters that are common for all studied fields according to 
the Morris Analysis. Min and Max represent the minimum and maximum Morris 
mean of elementary effects (μ*) in the studied parcels.  

Output Response Non-Influential Parameters Min Max 

Yield sPol  0.02  0.08 
pPolLo  0.03  0.09 
pPolUp  0.01  0.07 
Aer  0.05  0.08 
dxHi0  0.08  0.1 
sZsp  0.02  0.06 
sStm  0.04  0.09 
gZx  0.03  0.07 
Zn  0.01  0.05 
exF  0.06  0.09 

Aboveground Biomass sPol  0.02  0.05 
pPolUp  0.04  0.08 
pPolLo  0.01  0.06 
exF  0.03  0.07 
Aer  0.07  0.09 
dxHi0  0.05  0.08 

Canopy Cover dxHi0  0.04  0.06 
Wpy  0.03  0.09 
Wp  0.02  0.08 
Hi0  0.01  0.07 
exF  0.06  0.09 
sPol  0.02  0.08 
cdAge  0.03  0.09 
pPolUp  0.01  0.05 
pPolLo  0.04  0.08 
Aer  0.05  0.07 
sStm  0.03  0.06 
gYldDur  0.07  0.09  
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models or when the number of model trajectories is small, Morris versus 
variance-based approaches may order parameters differently. They 
concluded that the simplest approach (i.e., Morris) achieved equivalent 
outcomes to those reached by computationally intensive methods. We 
also found that the sensitive factors were generally consistent across the 
fields considered in our study. There were a few exceptions. Water stress 
factors (pStmUp, pSenUp, pExpLo) had no effect on simulating canopy 
cover in fields B1 and B2. These fields were sown early and so it is likely 
that they benefited from early rainfall mitigating effects of water stress. 
This has been reported in other studies including Xing et al. (2017) who 

reported that pSenUp was more sensitive in plants under water stress. 
Therefore, although we can anticipate similar sets of parameters to be 
influential across seasons and locations, they will change significantly 
according to climate and local environmental factors. 

4.2. Impact of the source of canopy cover on the predictive performance 
of AquaCrop 

Investigating the impact of various sources of canopy measures on 
prediction accuracy and considering the practical implications of 

Fig. 3. FAST analysis results for the canopy cover time series. Parcels B1 and B2, sown earlier, exhibited lower water stress due to additional rainfall.  

Fig. 4. FAST analysis results for the aboveground biomass time series. Parcels B1 and B2, sown earlier, exhibited lower water stress due to additional rainfall.  
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sourcing these measures are critical aspects in understanding the influ-
ence of different parametrization methods on AquaCrop’s predictions. 
Notably, good agreement was found between the simulated and 
observed canopy cover when using Landsat7 parametrization (PSOL7), 
although it was less accurate when compared to the hemispherical 
photography-based parametrizations (PSOHP). This could be explained 

by the effect of soil brightness on NDVI at low vegetative cover, which 
leads to an overestimation of the canopy cover at the beginning of the 
growing season, hence predicting an accelerated crop emergence (47.25 
GDDs when simulating with CCL7 against 98.56 GDDs when simulating 
with CCHP). Another aspect in favour of hemispherical photography 
parametrization is the saturation effect of satellite-based products and 
particularly NDVI at high vegetative cover in our scenario. Conse-
quently, the simulated canopy cover tended to be underestimated at 
high vegetation density at mid-season, resulting in a shorter time period 
for the crop to reach senescence compared to the other type of param-
etrization (gSenL7=610.99, gSenHP=817.6). Aboveground biomass of-
fers an alternative state variable that can be used to optimise the 
parameterisation of the AquaCrop canopy; and it is more directly related 
to yield prediction than canopy cover (see Section 2.1). However similar 
to canopy cover, predictions of aboveground biomass made from optical 
vegetation indices are subject to spectral saturation issues. Combining 

Fig. 5. FAST analysis results for the yield with cut-off value (horizontal red dashed line).  

Table 7 
Model performance indicators comparing observed and simulated canopy cover.  

Performance indicator Hemispherical photography Landsat7 

Calibration Validation Calibration Validation 

R2  0.98  0.76  0.72  0.62 
NRMSE (%)  6.39  45.87  28.97  51.37 
D-index  0.99  0.90  0.90  0.86 
EF  0.98  0.63  0.71  0.54  
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measures of vegetation indices with Lidar or texture features has the 
potential to address these limitations (Yue et al., 2017). Liu et al. 
(2022a) used data from unmanned aerial vehicles and found combining 
estimates of texture and crop height greatly reduced problems associ-
ated with saturation. Similarly, Liu et al. (2023) and Liu et al. (2022b) 

addressed the problem of spectral saturation in estimating potato 
aboveground biomass (AGB) through applying remote sensing tech-
niques to acquire RGB and hyperspectral images of potato growth stages 
from a high-definition digital camera sensor. The findings demonstrated 
that the accuracy of predictions under high coverage was improved by 

Fig. 6. Comparison of model simulated canopy cover using hemispherical photography, Landsat7 and field observed canopy cover using hemispherical photography 
and Landsat7. Where SimHP and SimL7 represent the simulated canopy cover by AquaCrop using Hemispherical photography and Landsat7 parametrisation sets, 
respectively. While ObsHP and ObsL7 denote the field observed canopy cover using hemispherical photographs and Landsat7 imagery, respectively. 

Fig. 7. Comparison of model simulated yield using hemispherical photography, Landsat7 and field observed yield in the calibration sites (left) and the validation 
sites (right). SimulatedL7 and SimulatedHP denote the AquaCrop simulated yield using Landsat7 and hemispherical photography parameterisations, respectively. The 
whiskers represent the minimum and maximum of the observed yield values (See Table 3). 
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fusing optical features (including RGB and hyperspectral vegetation 
indices), structural features (i.e., canopy fluctuation rate, crop height 
and coverage) and textural features. These integrative approaches 
therefore show great promise where appropriate data are available. 

Another key limitation with the Landsat 7 was the numbers of ob-
servations available across the season. At the time of the study passes 
occurred every 16 days. In the past five years there has been a rapid 
increase in the number of EO satellites, now medium resolution imagery 
(10–30 m pixels) is freely available every few days (Li and Chen, 2020). 
Other studies have explored the effect of the source of canopy cover 
measures on the accuracy of predictions. For example, Ma et al. (2017) 
considered the reliability of canopy cover retrieval from three different 
data types (LIDAR, aerial photography, and spaceborne imaging) and 
found that spaceborne WorldView2 (1.84 m pixel) data produced the 
highest accuracy (R2 = 0.58), followed by aerial imagery (R2= 0.50) and 
LIDAR data (R2= 0.33). Jin et al. (2020) conducted a similar method of 
parameter optimization with PSO to determine the yield of maize in 
China using hyperspectral data from a spectrometer. They demonstrated 
that the enhanced vegetation index (EVI) could be used to estimate CC 
more accurately than other vegetation indices such as NDVI (R2 = 0.78 
and RMSE = 9.84%). In a separate study, Jin et al. (2017) compared the 
results of the assimilation of optical and radar imaging data in China 
using the PSO algorithm. They found that the estimated CC obtained 
from RADARSAT-2 data outperformed HJ-1A/B optical data, indicating 
that the source of canopy cover data is a crucial factor affecting the 
model parametrizations. 

The empirical relationship between CC and NDVI is widely used 
(Gamon et al., 1995; Tsakmakis et al., 2021; Yang et al., 2017). How-
ever, its accuracy is subject to uncertainties related to factors, covering 
atmospheric conditions (Agapiou et al., 2011), sunlight angle (Ishihara 
et al., 2015), soil properties (Prudnikova et al., 2019), and vegetation 
types (Huemmrich et al., 2021; Zou and Mõttus, 2017). Despite the 
goodness of fit of the NDVI-CC relationship (R2 = 0.71), these un-
certainties may in part explain the poor performance of the L7 para-
metrisation as compared to the hemispherical-based parametrisation. 

The accuracy of AquaCrop’s yield predictions is reported to be 
strongly linked with the quality of the canopy cover simulations (Hsiao 
et al., 2009). This is consistent with our findings; our parametrization 
based on hemispherical photography data produced superior yield 
prediction results (Table 8). The obvious improvements in prediction 
accuracy from using the hemispherical photography-based compared 
with using Landsat 7 come at a cost. Hemispherical photographs 
required human intervention in the field (in our case eleven times per 
season). For each field, many photographs were taken to get an estimate 
of the mean canopy cover. As a result, the time and effort required grows 
proportionally with the number of taken photographs. Finally, the 
ability to use hemispherical photography is partially limited by the 
weather, since measurements may be missed due to rain, wind, or 
inaccessibility to the research site. Thus, coupling canopy cover obser-
vations extracted from both satellite imagery and hemispherical pho-
tographs is highly recommended to alleviate some of the 
weather-related constraints and subsequently improve yield 
simulations. 

5. Conclusions 

In this study, we carried out a two-stage sensitivity analysis (Morris 
and FAST) of crop canopy cover and yield for the FAO-AquaCrop model, 
in which we incorporated algorithms to account for the impact of soil 
fertility on canopy cover growth, maximum canopy cover, and biomass 
water productivity. The sensitivity analysis results revealed that canopy 
cover predictions were most sensitive to parameters related to emer-
gence and maturity timing as well as the canopy growth rate. For our 
study area, the influential parameters were generally consistent across 
seasons and fields with the exception of those related to water stress. 
This shows the importance of selecting sensitive parameters for a site 
based on data from several seasons or variation in sowing time. Our 
findings showed that the hemispherical photography-based parameter-
ization outperformed the satellite-based parameterization for canopy 
cover and yield simulations using AquaCrop. Although simulations of 
the Landsat 7 observed canopy were reasonable in the validation set, 
they were not as accurate as those from hemispherical photographs and 
the associated yield predictions were particularly poor. This highlights 
the importance of accurate canopy cover predictions in estimating final 
yield. Overall, our research demonstrates the usefulness and efficiency 
of the proposed optimization procedure in capturing the full range of 
model parameters using different source of data while accommodating 
the unique characterises of the study area. Further research may be 
needed to examine the potential Improvements in prediction that could 
be achieved by integrating different types of canopy cover data (Hybrid 
models, portable instruments, UAV, Radar, and optical data) or by 
updating the model predictions in real-time as new observations become 
available. 
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Table 8 
Model performance indicators comparing observed and simulated yield.  

Performance indicator Hemispherical photography Landsat7 

Calibration Validation Calibration Validation 

R2  0.89  0.44  0.99  0.10 
NRMSE (%)  20.63  25.4  13.86  34.23 
D-index  0.89  0.75  0.95  0.55 
EF  0.73  0.04  0.88  -0.73  
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Appendix A. Daily meteorological data

Fig. A1. Daily meteorological data on the experimental site for the 2002–2003 and 2002–2003 growing seasons.   
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Appendix B. AquaCrop model main parameter list  

Table B.1 
AquaCrop main sensitive model parameters values obtained using the two 
studied approaches  

Input Parameters Parametrization 

PSOL7 PSOHP 

gEme  47.250  98.56 
gMat  1500  1472.10 
gSen  610.99  817.63 
CDC  0.004008  0.004929 
CGC  0.011127  0.010551 
CCX  0.97  0.95 
WxTopZ  0.014176  0.05881 
WxBotZ  0.002124  0.058738 
pExpLo  0.719999  0.719994 
pStmLo  0.741239  0.699532 
pStmUp  0.354651  0.34125 
pSenUp  0.946777  0.858135 
sExp  4.874926  4.87476 
gYld  455.72  641.55 
gYldDur  748.94  669 
Kcb  1.785033  0.579192 
Wp  27.5  20 
Wpy  56.25  156.25 
Hi0  0.31596  0.249975  
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